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Appendix B3
Derivation of the Boltzmann Distribution

Consider an isolated system, whose total energy is therefore constant, consisting of an ensem-
ble of identical particles1 that can exchange energy with one another and thereby achieve
thermal equilibrium. In order to simplify the numerical derivation, we shall assume that the
energy E of any individual particle is restricted to one or another of the values 0, DE, 2DE,
3DE, . . . Later, after seeing how the distribution emerges, we can let DE : 0 so that the
permitted energies are continuous. Simply to keep the amount of subsequent calculation man-
ageable, we will assume that the system consists of only six particles (hardly a “large” number!)
and that the total energy Etotal of the system is 8DE, both numbers being arbitrarily chosen,
the latter of necessity being an integer multiple of DE.

It is also convenient at this point to introduce the concept of macrostates and microstates.
The term microstate refers to the description of the system in which the state of every indi-
vidual particle is specified. For classical particles this means specifying the position and mo-
mentum, and hence energy, for each. In quantum mechanics, as we shall see in the following
sections, it means specifying a complete set of quantum numbers for each particle. The mac-
rostate for a system is a less detailed description in which only the number of particles oc-
cupying each energy state is specified.

Since the particles can exchange energy with one another, all possible macrostates, i.e.,
divisions of the total energy Etotal 5 8DE between six particles, can occur. For the example we
are considering there are 20 macrostates, labeled 1 through 20 in Table B3-1. For instance,
macrostate 1 has five particles with E 5 0 and one with E 5 8DE; macrostate 2 has four
particles with E 5 0, one with E 5 DE, and one with E 5 7DE; and so on. Notice that there
are six different ways in which we can rearrange the particles in macrostate 1 so as to achieve
that particular division of the total energy 8DE, since any one of the particles can be put into
the state 8DE with the other five in the state E 5 0. Each of these six arrangements is different
from the other because the classical particles in a microstate are identical in terms of physical
properties, but distinguishable in terms of position and momentum, and hence energy. Thus,
the rearrangements of the five particles in the E 5 0 state are not distinguishable from one
another, since all five have the same energy. The number of distinguishable rearrangements of
the particles within a given macrostate is the number of microstates.

The way in which the number of microstates is computed is as follows. For six particles
the rules of statistics tell us that there are 6! different rearrangements or permutations possible.
For N particles the number is, of course N!. However, since rearrangements within the same
energy state are not distinguishable, those must be divided out of the total:

N!
Number of microstates 5

n !n ! · · · n !0 1 i

For macrostate 1 there are five particles in the E 5 0 state, so the 5! rearrangements of those
five must be divided out of the 6! total number for all six particles in order to obtain the
number N of distinguishable rearrangements, or microstates, for macrostate 1. Since 6!/5! 5
6, that is how the number of microstates for macrostate 1 was determined. The following
example illustrates the calculation for macrostate 6 of the system we are using for the deri-
vation.

Example B3-1 Number of Microstate
Compute the number of microstates, i.e., distinguishable rearrangements, for macrostate 6 in
Table B3-1.



Solution
The total number of possible rearrangements of six particles is 6!; however, energy state
E 5 0 contains three particles, hence 3! indistinguishable rearrangements, and energy state
E 5 DE contains two particles, hence 2! more. Therefore, the total number of microstates is

N! 6! 6 3 5 3 4 3 3 3 2 3 1
5 5 5 60

n !n ! 3! 3 2! 3 3 2 3 1 3 2 3 10 1

If we now make the reasonable assumption that all microstates occur with the same prob-
ability, then the relative probability Pj that macrostate j will occur is proportional to the number
of microstates that exist for that state. For our system there are 1287 total microstates, so the
relative probability Pj of occurrence for each of the 20 macrostates is the number of micro-
states listed in the column on the right of Table B3-1 divided by 1287. Now we are close to
obtaining the approximate form of the Boltzmann distribution. Assuming that the most prob-
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Table B3-1 States and occupation probabilities for six particles with total energy 8DE

Macrostate
j

Number of particles with energy
Ei equal to iDE

0 DE 2DE 3DE 4DE 5DE 6DE 7DE 8DE
Number of
microstates

1 5 0 0 0 0 0 0 0 1 6

2 4 1 0 0 0 0 0 1 0 30

3 4 0 1 0 0 0 1 0 0 30

4 4 0 0 1 0 1 0 0 0 30

5 4 0 0 0 2 0 0 0 0 15

6 3 2 0 0 0 0 1 0 0 60

7 3 0 2 0 1 0 0 0 0 60

8 3 0 1 2 0 0 0 0 0 60

9 3 1 1 0 0 1 0 0 0 120

10 3 1 0 1 1 0 0 0 0 120

11 2 0 4 0 0 0 0 0 0 15

12* 2 2 0 2 0 0 0 0 0 90

13* 2 1 2 1 0 0 0 0 0 180

14* 2 2 1 0 1 0 0 0 0 180

15 2 3 0 0 0 1 0 0 0 60

16 1 4 0 0 1 0 0 0 0 30

17 1 3 1 1 0 0 0 0 0 120

18 1 2 3 0 0 0 0 0 0 60

19 0 4 2 0 0 0 0 0 0 15

20 0 5 0 1 0 0 0 0 0 6

n(Ei) 2.31 1.54 0.98 0.59 0.33 0.16 0.07 0.02 0.005 1287
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able distribution of the particles among the available states is that corresponding to thermal
equilibrium, it remains only for us to calculate how many particles n(Ei) are likely to be found
in each of the nine energy states E0 5 0 through E8 5 8DE. Consider the E0 5 0 state. For
macrostate 1, the probability of occurrence P1 is 6/1287 and there are five particles in the
E0 5 0 energy state; therefore, macrostate 1 will contribute 5 3 (6/1287) 5 0.023 particles
to the total for E0 5 0. The numbers of particles contributed by the other 19 macrostates to
the E0 5 0 state are computed in an identical manner and, when added, yield a total n(0) 5
2.31 particles, meaning that an average of 2.31 of the six particles will be found to have E 5 0.
Thus, in general the n(Ei) values are given by

n(E ) 5 n p 5 g f(E ) B3-1ai O i j j i i
j

where gi is the statistical weight of state i and ƒ(Ei) is the probability that a particle will have
energy Ei. Clearly, then,

N 5 n(E ) B3-1bO i
i

The bottom row of Table B3-1 records the result of this calculation for each of the possible
energies. Note that the sum of the n(Ei) values is 6, as you would expect.

In Figure B3-1 the values of n(Ei) are plotted against E. The curve shown with the solid line
is an exponential function fitted to the data, where B and Ec are constants:

2E/Ecn(E) 5 Be B3-2

If we allow DE to become smaller while keeping the total energy the same as before, we get
more data points on the graph. In the limit as DE : 0, E becomes a continuous variable and
n(E) a continuous function. If we also increase the number of particles to a statistically large
number, we find that the data points fall exactly on the solid curve in Figure B3-1, i.e., the form
of the Boltzmann distribution is correctly given by Equation B3-2. Verifying this with an
extension of the calculation for six particles and Etotal 5 8DE to a large number of particles
and energy states would be a formidable task. Fortunately, there is a much simpler, but subtle,
way to show that it is correct, as has been described by Eisberg and Resnick.2

When a particular particle gains energy as the result of an interaction, it does so at the
expense of the rest of the particles since the total energy of the system is conserved. Except
for this conservation requirement, the particles are independent of one another and, in par-
ticular, there is no prohibition or constraint on more than one particle occupying the exact
same energy state, as Table B3-1 illustrates. Consider just two particles from the ensemble. Let
the probability of finding one of them in the energy state E1 be given by f (E1). Since the
distribution function is the same for all of the particles (because they are identical), the prob-
ability of finding the second one in an energy state E2 is found by evaluating that function at
E2, i.e., ƒ (E2). Since the particles are independent of one another, so are their probabilities.
Consequently, according to probability theory, the probability of both occurrences, i.e., of
finding one particle with energy E1 and the other with energy E2, is the product of the prob-
abilities f (E1) 3 f (E2). (This is equivalent to the probability of obtaining heads on two successive
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Fig. B3-1 n(e) vs. E for data from
Table B3-1. Solid curve is the
exponential n(E) 5 , where the2E/EcBe
constants B and Ec have been adjusted
to give the best fit to the data points.



coin tosses. The probability of getting heads is 1/2 on each toss, and the tosses, like the
particles, are independent, so the probability of getting heads twice is 1/2 3 1/2 5 1/4.)

Now consider all of the macrostates of the system for which the sum of the energies of
the two particles totals E1 1 E2, as was just discussed, but for which the two particles share
the total differently from before.3 Since the energy is conserved, the remainder of the system
has the same amount of energy (and the same number of particles) for each of these macros-
tates, namely, Etotal 2 (E1 1 E2). So all of these remainders have the same number of ways to
divide their energy among their constituent particles. Therefore, the probability for those
microstates in which E1 1 E2 is shared between the two particles in a certain way can differ
from the probability for those microstates in which E1 1 E2 is shared differently only if the
different ways E1 1 E2 can be shared occur with different probabilities. However, we have
already assumed that all microstates occur with the same probability; therefore, we must
conclude that all microstates in which E1 1 E2 is shared differently between the two particles
occur with the same probability. This means that the probability for such microstatesoccurring
is some function of the sum E1 1 E2, say, h(E1 1 E2). The original sharing of energy, E1 to one
particle and E2 to the other, is certainly one of these and, hence, has probability h(E1 1 E2).
But we have already shown that particular sharing to occur with probability f (E1) 3 f (E2),
and we must conclude, therefore, that

f(E ) 3 f(E ) 5 h(E 1 E )1 2 1 2

Thus, the probability distribution f (E) that we seek has the property that the product of the
results of evaluating the function f (E) at two different energies is a function of the sum of
those energies. The only mathematical function that has this property is the exponential func-
tion.4 If we take n(Ei), the average number of particles with energy Ei (again, see Table B3-1),
to be proportional to f (Ei), as would be expected, then we have from Equation B3-2 that

2E/Ecf(E) 5 Ae B3-3

from which we conclude that the exponential form used to fit the data in Figure B3-1 is the
only correct form of the distribution of identical, distinguishable particles among the available
energy states of a classical system.5

Boltzmann used calculus of variations to do a much more general derivation of Equation
B3-3 than we have done here, obtaining for the constant Ec, independent of the nature of the
particles, the value

E 5 kT B3-4c

where k is the Boltzmann constant given in Equation 8-10 and T is the absolute temperature.
Inserting Ec from Equation B3-4 into Equation B3-3 gives the Boltzmann distribution ƒB, the
probability that a state with energy E is occupied at temperature T:

2E/kTf (E) 5 Ae 8-13B

In a wave-mechanical treatment of the example system of six identical particles that we used
in the optional derivation of the Boltzmann distribution above, the individual microstates that
were identified for a particular macrostate cannot be distinguished from one another. Thus,
rather than the 1287 distinguishable microstates listed in Table B3-1, the system of six identical,
indistinguishable particles with a total energy 8DE has only the 20 macrostates. Again assuming
that each of these states occurs with equal probability, as we did with the distinguishable
microstates earlier, the average number of particles in each energy state is computed just as
illustrated in that example. For example, for the E 5 0 state, state 1 contributes (see
Table B3-1)

Number of particles in state 1 with E 5 0 5
5

Number of states 20
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and the average number of particles nBE(0) in energy state E 5 0 is, therefore,

[5 1 (4 3 4) 1 (5 3 3) 1 (5 3 2) 1 (3 3 1)]
n (0) 5 5 2.45BE 20

Table B3-2 lists the average number of such particles nBE(E) in each energy state computed in
the same manner as the example above. Note that the number of particles totals 6, as expected.

There is yet another condition that limits the way in which quantum-mechanical particles
that obey the Pauli exclusion principle can be distributed among the energy states. If our six
particles were electrons, the exclusion principle would prevent more than two (one with spin
up and one with spin down) from occupying any particular energy. Since the exclusionprinciple
applies to all particles that, like electrons, have -integral spins, such as protons, neutrons,1

2

muons, and quarks, this limitation in number per energy state applies to them, also. Examining
Table B3-1, we see that only the three macrostates marked with asterisks (12, 13, and 14) conform
to this limitation. Thus, particles that obey the exclusion principle can occupy only those three
states. Once again assuming that each is occupied with equal probability, the average number
of particles nFD(E) in each energy state is computed as before. For example, the average number
of particles in the E 5 0 state, nFD(0), is

number of particles with E 5 0 (2 1 2 1 2)
n (0) 5 5 5 2FD number of states 3

The bottom row in Table B3-2 records the results of computing nFD(E) for each of the values
of E for six identical, indistinguishable particles that obey the exclusion principle.

Notes for Appendix B3
1. We use the term particles here as a specific example. They could be molecules, grains of

dust, or coil springs, for example, just as long as they are all identical and can contain
energy.

2. See R. Eisberg and R. Resnick, Quantum Physics, 2d ed., Wiley, New York, 1985, Appendix
C-4.

3. Using the particles in Table B3-1 as an example, suppose E1 1 E2 5 5DE. Then macrostates
4, 8, 9, 10, 13, 14, 15, 16, and 17 are all ones in which two particles have total energy 5DE,
although each particle’s share varies between the macrostates.

4. Recall that ea 3 eb 5 e(a1b).
5. This argument allows both positive and negative exponentials. The positive exponential is

ruled out on physical grounds, since it predicts an infinite probability that a particle will
have infinite energy, which is in obvious disagreement with experimental observation.
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Table B3-2 Distribution of six quantum particles with total energy 8DE

Energy
state 0 DE 2DE 3DE 4DE 5DE 6DE 7DE 8DE

nBE(E) 2.45 1.55 0.90 0.45 0.30 0.15 0.10 0.05 0.05

nFD(E) 2.00 1.67 1.00 1.00 0.33 0 0 0 0


