2-6 Transport Phenomena

In. the calculation of the pressure exerted by a gas on its con-
tainer the size of the molecules was not involved, and we could
neglect the collision of the molecules with each other. We shall
now consider the phenomena of viscosity, heat conduction, and
diffusion, which depend directly on the size of gas molecules
and on molecular collisions. The success of the application of
kinetic theory to these phenomena provided one of the first con-
vincing demonstrations of its essential validity, and consequently
of the existence of molecules.

In the kinetic theory, viscosity involves the transport of mo-
mentum, heat conduction involves the transport of kinetic en-
ergy, and diffusion involves the transport of the density of the
molecules. Molecular collisions play an important role in the
transport of these quantities, and the frequency of collisions de-
pends directly on the size of the molecules and the number of
molecules per unit volume.

It is not difficult to see that if either Avogadro’s number or
the size of a molecule is known, the other can be estimated. Con-
sider, for example, a solid in which the molecules are close
together. If we assume each molecule to occupy a cube of side d,

"where d is the diameter of the molecule and also the distance
between the centers of the molecules, the volume of 1 mole of
the solid is Nyd®. If M is its molecular weight, its density is

M

p= N 2-38

Either N, or d can be found from a simple measurement of den-
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sity if the other is known.! If neither is known, they can both be
obtained if a second relationship can be found.

The comparison of the predictions of kinetic theory with
macroscopic measurements of viscosity and heat conduction
provided one of the first estimates of molecular sizes and of
Avogadro’s number. We shall consider here only the most ele-
mentary treatment of kinetic theory of transport phenomena.

An important quantity characterizing molecular collisions is
the average distance a molecule travels between collisions. This
distance is called the mean free path, €. We should expect £ tode-  Mean free path
pend inversely on the molecular size and the density of the gas.
We can relate € to the number density n and the diameter d as
follows.

Consider one molecule moving with speed v through a region
of stationary molecules of number density n (Figure 2-17). It will
collide with another molecule if the centers are a distance 2r, or
d, apart. In time ¢ the molecule moves a distance vt and collides
with every molecule in the cylindrical volume wd?st. The
number of molecules in this volume is nwd*vt. (After each colli-
sion, the direction of the molecule changes; thus the path is
really a zigzag one.) The total path length divided by the
number of collisions is the mean free path:?

¢~ vt _ 1
nmd>t  nwd?

2-39

‘The quantity md? is the effective area presented by one molecule

of diameter d to another of the same size. This area is called the

collision cross section, o. If the molecules are of different size the Cross section
collision cross section would be 7(r; + r2)%, where r; and r» are

the radii. In terms of the collision cross section,

0=+ 9-40
no

Let us now examine the phenomenon of viscosity. Consider a
gas between two plates; the upper plate is pulled to the right

! The quantity d can now be accurately determined from x-ray diffraction mea-
surements.

2 Of course, the other molecules are not stationary. If we assume a Maxwell-
Boltzmann distribution of velocities, the calculation is considerably more in-
volved, with the result € = 0.707/nmd% For our purposes, we may neglect
this and other corrections.

Figure 2-17

Model of a molecule
moving in a gas. In time ¢
the molecule with diame-
ter d will collide with any
similar molecule whose
center is in a cylinder of
volume 7d%vt, where v is
the molecular speed. In
this picture all the mole-
cules but one are as-
sumed to be at rest.

Diameter d
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with a speed uy, while the bottom plate is held stationary. It is
found that the gas has a net flow to the right, the speed varying
with height z from the bottom plate. Essentially, the gas near the
top tends to follow the upper plate with speed o, whereas that
near the bottom tends to remain at rest. The flow velocity u(z) is
superimposed on the random, or thermal, velocity of the mole-
cules. A force is necessary to keep the upper plate moving with
constant speed and to hold the bottom plate at rest. Evidently
there is a drag force, called a viscous force, exerted by the gas.
The coetficient of viscosity is defined as follows.

Consider a hypothetical plane surface of area A4 parallel to the
plates at a height z; above the lower plate, as in Figure 2-18. The
gas above this surface exerts a force to the right on the gas
below, and of course the gas below exerts an equal but opposite
force to the left on the gas above. This force is tangential to the
plane and proportional to the area 4 and to the velocity gradient
du/dz. The force per unit area is called the viscous stress, S.

S=’n£ 241

This equation defines the coefficient of viscosity, 7.

We shall consider qualitatively the kinetic-theory explanation
of the force exerted on the gas below z; (shaded region in Figure
2-18). In this theory we consider each molecule to have an
average “drift” velocity u to the right (superimposed on its
-.thermal velocity) which is characteristic of the gas velocity u at
the point of the last collision of the molecule. Molecules crossing
the plane from above bring in x momentum mu, and those
crossing {rom below carry away x momentum mus. Since the
average momentum of those from above is greater than that
from below, there is a net transfer of momentum across the
plane. The net transfer of momentum across the plane per sec-
ond per unit area equals the stress exerted on the lower gas.
From this model we expect the net rate of transfer of mo-
mentum to be proportional to the rate at which molecules cross
the plane, which is proportional to the number density n and the
mean speed 7. It should also be proportional to the mean free
path. For example, for molecules from above, the greater the
distance to its last collision, the greater its average momentum
mu. A detailed calculation gives for the viscous stress
nol dJ;’ﬂl = du

2

nol a 2-42

S

Figure 2-18

Viscous flow of a gas. Be-
cause of the relative mo-
tion of the plates, the gas
between them has a flow
velocity that varies from 0
at the bottom plate to u,
at the top plate. Mo-
mentum is transferred
from one layer to the
other by molecules that
cross the boundary.
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so the coefficient of viscosity is
n = nv€ém , 2-43

where m is the mass of the molecule. Substituting € = 1/nwd®
from Equation 2-39 we have
_ Lm0
=3 7d

Note that this expression is independent of density. This sur-
prising result was first pointed out by Maxwell and verified
by him experimentally over a wide range of densities. (At
extremely low densities, this theory breaks down when the
mean free path becomes of the order of the size of the con-
tainer.) Equation 2-44 also implies that n depends on tempera-
ture only through 7, which increases as T"2. The experimental
results, so easily understood by a simple kinetic-theory model,
that the viscosity of gas is independent of density (and there-
fore independent of pressure at constant 7') and increases with
temperature (rather than decreasing, as is the case for liquids),
were an important factor in the general acceptance of the
kinetic theory in the nineteenth century.

If we write m = /N, for the mass of a molecule, and use the
result 7 = (8RT /7w M)*? from the Maxwell distribution, we can
write for the coefficient of viscosity

M SRT\ 12
n= 3w Nad? <7'r./&t

Loschmidt in 1885 used this result along with Equation 2-38 and
measurements of the viscosities of gases and of the densities of
solids to obtain the first reliable estimate of N, and d. (The
number N, is often called “Loschmidt’s number” in Europe.)
He obtained d = 107 m and N, = 10 X 1023, This is reason-
ably close to the modern value N, = 6.022 X 10%,

2-44

2-45

Table 2-3
Some values of molecular mean free paths, and molecular radii
computed from viscosity measurements

7(15°C) €(15°C, 1 atm) r
Gas (newton-sec/m) (A) (A)
He 1.94 x 1078 1860 1.09
Ne 31.0 1320 1.30
Ar 22.0 666 - 1.82
H. 8.71 1180 1.37
N: 17.3 628 1.88
O, 20.0 679 1.80
CO; 14.5 419 2.30
NH; 9.7 451 2.22
CH, 10.8 516 2.07

From ]J. F. Lee, F. W. Sears, and D. L. Turcotte, Statistical Thermodynamics,
Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1963.
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If we use the modern value of Ny, we can compute the molec-
ular radius® from viscosity measurements using Equation 2-44
and the mean free path using Equation 2-39. Table 2-3 lists the

results for several gases. From this table we see that molecular

radii are about 1 or 2 A (1 A = 107 m), and at normal densities

the mean free paths are several hundred times this.

Example 2-7 What is the order of magnitude of the time
between collisions for N, molecules in a gas at standard con-
ditions? Let 7 be the time between collisions. The average dis-
tance traveled by a molecule in this time is € = v7. Using £ =
600 A = 600 X 107 m from Table 2-3, and v =~ 500 m/sec
from the calculation of vy in Example 2-1, we have
_¢ 600x10"m
T T T 500 m/sec 107 sec

The collision frequency is of the order of 1/7 = 10" collisions
per second. .

The treatment of heat conduction is similar to that of viscosity
except that we consider the transport of molecular energy
rather than of momentum. Consider the plates shown in Figure
2-18 to be at rest and at different temperatures. If AQ is the heat
conducted across area 4 in time At, it is found that AQ is pro-
portional to 4, At, and the temperature gradient d7'/dz. The

- . coefficient of heat conduction, K, is defined by

AQ . dr
aa - K 2-46

We can use the same analysis that we used for viscosity if we re-
place the momentum mu by the average energy per molecule E.
Molecules crossing the plane from above transport more energy
than those from below if the upper plate is at a higher tempera-
ture. Equation 2-42 then becomes for the case of heat conduc-
tion

80 _1 _dE

1A -3 nof A 2-47
If we multiply the average energy per molecule by N 4, we obtain
the energy per mole. Thus EN4 = C,T and

AQ  1n3€C,dT

AAt ™ %3 N4 dz 248
The coefficient of heat conduction is therefore
K = 3 N, 2-49

! It should be pointed out that we are not implying that molecules are spherical.
It is the collision cross section that is determined from Equation 2-44. By radius,
we mean the quantity related to the collision cross section by o = wd? = 47r%

79
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Comparing with Equation 2-43 for 7, we have

K_ G _G
m  Nm M
or
K
T)Cv_l 2-50

The experimental determination of this ratio yields numbers
between about 1.5 and 2.5 for most gases. The agreement within
a factor of 3 of theory and experiment is another success of the
kinetic model, for there is little reason from the macroscopic
point of view to suspect heat conduction and viscosity to be
simply related. The discrepancy is due to the oversimplification
of the theory.

The coefficient of self-diffusion® is defined by

An dn
where An is the number of molecules crossing the plane of area
A4 in time At. In this case it is the number of molecules that
varies, leading to the transport of molecules. The simple theory
gives :
D = 3¢€v 2-52

We should note that the numerical factors such as the factor
1 in the result for the viscosity, heat conduction, and diffusion
coefficients come from the simplest kinetic-theory calculations
and are often modified by more detailed treatment. In the case
of mutual diffusion, or diffusion of large objects through a gas
or liquid, this simple mean-free-path treatment is not even an
adequate starting point.

Question

8. If we double the number density #, twice as many molecules
cross a given area per second. Does this double the rate of heat
conduction? Why or why not?

! Self-diffusion is the diffusion of molecules into others of the same kind because
of a density difference. Restricting the problem to like molecules simplifies the
calculations because all the collision cross sections are the same. Experimentally,
self-diffusion can be observed by using radioactive-tracer methods to tag certain
molecules without changing their collision cross sections.

Optional

2.7 Brownian Motion and the
Random-Walk Problem

In 1828 a botanist, Robert Brown, observed an irregular zigzag
motion of pollen grains suspended in water. After much experi-
mentation, he concluded that the cause of the motion was not
organic, for he observed it in a wide variety of materials. This
motion, now called Brownian motion, went unexplained for
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nearly half a century, until the kinetic theory was developed.
(Many thought that the motion was due to convection currents
or vibrations transmitted through the liquid.) The true cause of
Brownian motion, the irregular bombardment of the grains by
the molecules of the suspending fluid, was finally understood at
the beginning of the twentieth century. The first complete
theory was given by Einstein in 1905. In 1908, Jean Perrin made
exhaustive quantitative observations of the paths of many sus-
pended particles of different sizes. From these observations,
which were in good agreement with Einstein’s theory, Perrin cal-
culated Avogadro’s number. Perrin’s monumental work finally
laid aside all doubts as to the validity of the kinetic theory of
matter.

The Brownian motion of suspended particles is similar to the
diffusion of molecules, except that the particles are much larger
than the molecules. We can get some insight into a number of
statistical processes, such as diffusion, Brownian motion, and the
combination of errors, by considering a simple statistical
problem called the random-walk problem. In the one-dimensional
version of this problem, a man flips a coin and takes one step
forward if the result is heads or one step backward if the result is
tails. We are interested in determining how far the man gets
from the starting point on the average. Suppose the man takes
N steps, each of size unity. After N steps, the man has a displace-
ment xy from the origin. Since the probabilities of a forward
step and a backward step are equal, the average displacement X»
will be zero. We shall now show that the rms distance from the
origin after N unit steps equals N2,

After one step the displacement is

Xlztl

Squaring, we obtain x,* = + 1. After two steps, the displacement
is

X =x1 % 1
Squaring, we obtain
X2 = %% x£ 2x; + 1

When we take the average, the middle term drops out because
(x1)ay = 0. Then

(x22)av = (xlz)av +1= 2

If we continue, we find that (x3%)a, = (x9)ay + 1 = 3, and so
on. Therefore, after N steps we have

(*n%)ay = N 2-53
If the step size is €, the above argument gives
(xyP)ay = N€* 2-54

and

Xpms = NV2€ 2-55
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Figure 2-19

Brownian motion. Points
indicate successive posi-
tions of a particle ob-
served at 30-sec intervals.
The lines between the
points are added to indi-
cate the sequence of posi-
tions; the particle does
not move in straight lines
between observations be-
cause it is struck by mil-
lions of molecules each
second. (From Jean Perrin,
Atoms, trans. D. Hammick,
New York: D. Van
Nostrand Company, Inc.,
1923)

This result can be applied to error theory. The probable re-
sulting error due to the combination of a large number, N, of
small random errors of size € is given by Equation 2-55. We can
also relate this to the problem of self-diffusion by taking N to be
the number of collisions made and € to be the mean free path. If
the mean speed of the molecules is 7, the number of collisions
made in time ¢ is N = 3t/¢; so

(x%)ay = TEE

Thus the mean-square distance is proportional to the time.

Since Brownian motion of a suspended particle is the result of
many small irregular movements due to random molecular
bombardment, the mean-square distance for this motion is also
proportional to the number of collisions made by the particle
and therefore to the time.

In 1905 Einstein applied kinetic theory to the calculation of
the rms displacement of a large sphere of radius @ undergoing
Brownian motion in a gas of viscosity 1. His result was

RT p
3mmaN 4

(x%)av = 2-56
Einstein pointed out that this result could be used to obtain
Avogadro’s number.

In 1908 Jean Perrin made a series of remarkable measure-
ments of Avogadro’s number. In order to use Equation 2-56, he
needed a large number of small but visible particles of equal
radius a. He found that he could make emulsions of gamboge
(prepared from a dried vegetable latex) and mastic which, after
several months of separation by centrifuging, contained grains
of nearly equal size.! In one series of measurements, he watched
individual particles as they moved about and recorded their po-
sitions at equal time intervals. He verified that the mean-square
displacement was proportional to the time and determined N 4.
Figure 2-19 is a diagram of the horizontal projections of the po-
sitions of a grain with radius 0.53 X 107% m observed at inter-
vals of 30 sec. The following quotation is taken from Perrin’s
Nobel Prize address in 1926.

! An interesting account of Perrin’s experiments can be found in Jean Perrin,
Atoms, New York: D. Van Nostrand Company, Inc., 1923.
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Wide World Photos

Jean-Baptiste Perrin.

Figure 2-20

Equilibrium height distri-
bution of particles in a
gravitational field. The
distribution is the same as
that given by the law of
atmospheres,

n(z) = noe ™9**T (This
computer-generated plot
courtesy of Paul Doherty,
Oakland University.)
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These theories can be judged by experiment if we know
how to prepare spherules of a measurable radius. 1 was, therefore,
in a position to attempt this check as soon as I knew, thanks to
Langevin, of the work of Einstein.

I must say that, right at the beginning, Einstein and Smolu-
chovski had pointed out that the order of magnitude of the
Brownian movement seemed to correspond to their predic-
tions. And this approximate agreement gave already much
force to the kinetic theory of the phenomenon, at least in
broad outline,

It was impossible to say anything more precise so long as
spherules of known size had not been prepared. Having such
grains, I was able to check Einstein’s formulae by seeing
whether they led always to the same value for Avogadro’s
number and whether it was appreciably equal to the value
already found.

This is obtained for the displacements by noting on the
camera lucida (magnification known) the horizontal projec-
tions of the same grain at the beginning and at the end of an
interval of time equal to the duration chosen, in such a manner
as to measure a large number of displacements, for example,
in one minute.

In several series of measurements I varied, with the aid of
several collaborators, the size of the grains (in the ratio of 1 to
70,000) as well as the nature of the liquid (water, solutions of
sugar or urea, glycerol) and its viscosity (in the ratio of 1 to
125). They gave values between 55 X 10%2 and 72 X 10%, with
differences which could be explained by experimental errors.
The agreement is such that it is impossible to doubt the cor-
rectness of the kinetic theory of the translational Brownian
movement.!

In another series of measurements, Perrin determined N, by
measuring the density of particles suspended in an emulsion at
different heights. If a fluid is in a uniform gravitational field in
the negative z direction, the number density is given by the law
of atmospheres (Equation 2-37)

n(z) = noe—myz/kT — noe—«l{gleT 2_57
where n¢ is the number at z = 0. If a visible particle is sus-
pended in the fluid, its tendency to sink because of gravity is
counteracted by a tendency to rise because it is struck by more
molecules from below than from above (due to the greater den-
sity below, as shown by Equation 2-57). The equilibrium distri-
bution of the visible particles is given by Equation 2-57 with
M = Nygm, where m is the mass of the particle (Figure 2-20).
Thus N4 can be determined by measuring the mass of the par-
ticles and the number versus height.

Perrin also measured the rotation of particles in a fluid due
to bombardment by molecules, and calculated N, from the
theory of rotational Brownian motion given by Einstein.

! From Nobel Prize Lectures: Physics, Amsterdam and New York: Elsevier Pub-
lishing Company, 1964.
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Summary

The number of molecules in a mole is Avogadro’s number
N, = 6.022 x 10%, which is the reciprocal of the unified mass
unit expressed in grams.

A simple model assuming that the pressure of a gas is due to
collisions of molecules with the walls of a container implies that
the mean kinetic energy of the molecules is proportional to the
temperature of the gas.

The probability of occurrence of a value of x in the range dx
is given by f(x) dx, where f(x) is the distribution function.
Such a function obeys the normalization condition

ff(x) dx =1

The Maxwell-Boltzmann velocity distribution is

m 3/2 . R
F(vg,0y,v02) = (m ¢~ M v+ OR2KkT

and the speed distribution is

_ 2 (M N orer
gv) = 4mv SmkT e

The Maxwell-Boltzmann energy distribution is
F(E) = CEV2 e—E/kT

where C is determined by normalization.

The mean translational kinetic energy of gas molecules is 34T,
independent of any characteristics of the molecules. This is an
example of the equipartition theorem: there is a mean energy of
$kT associated with each squared coordinate or momentum in
the expression for the energy of a molecule. Molecular speeds
are of the order of magnitude of the speed of sound.

An elementary theory of transport yields similar expressions
for the coefficients of viscosity, heat conduction, and diffusion
in terms of the molecular density, mean speed, and mean free
path between collisions. The mean free path varies inversely
with density and with the square of the molecular diameter. In
particular, this theory predicts that the coefficient of viscosity s
independent of density and is proportional to the square root of
the temperature, in agreement with experiment. From this
theory, and macroscopic measurements of viscosity, the first es-
timates of molecular size and Avogadro’s number were made.

In the random-walk problem, the rms distance is propor-
tional to the square root of the number of steps. This problem is
useful in vizualizing the processes of diffusion and Brownian
motion. Since the number of molecular collisions is proportional
to time, the rms distance for diffusion or Brownian motion is
proportional to the square root of the time. Detailed observa-
tions of the position of particles in colloidal suspension allowed
Perrin to make the first accurate measurements of Avogadro’s
number and to verify directly and quantitatively the predictions
of kinetic theory.



