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2. THE OLD QUANTUM THEORY:
WILSON-SOMMERFELD QUANTIZATION RULES

Wilson? and Sommerfeld® independently discovered a method of quantizing
the action integrals of classical mechanics, and this method was subsequently
applied to a number of physical systems. A necessary condition for the appli-
cation of this method is that each generalized coordinate ¢, and its conjugate
momentum p, must be periodic functions of time. Then the action integral
taken over one cycle of the motion is quantized; that is,

ff b dg, = nh. (4.1)

To illustrate the method, consider a one-dimensional simple harmonic oscillator
whose equation of motion is

mx + kx = 0,
or

x + @ =0,
where

w? = Ii .
m

Then,

X = x, sin ot
and

b, = mi = mwx, cos wt.
Equation 4.1 becomes

T
nh = i bodx = f maw®xj cos? wt dt
0

27
= mwxﬁf cos® 0 d6
[}

A = mwnxg.
Therefore,

or the amplitudes are quantized. The energy states are

E =T+ 7V = }mi® 4 }kx?

= Imw?g,
or,

E, = nok = nhy., (4.2)‘

4'W. Wilson, Phil. Mag. 29, 795 (1915).
® A. Sommerfeld, Ann. Phys. 51, 1 (1916).



THE OLD QUANTUM THEORY 13

In both the classical theory and the old quantum theory, the ground
state energy of an oscillator is incorrectly given as zero. However, the level
spacings are correct in these older theories. From the oscillator energy levels
obtained in Equation 4.2, there is no information about which transitions are
most likely to occur, or in fact, whether any are forbidden. Information of this
kind goes under the general heading of selection rules and is readily obtained in
the new quantum mechanics. However, in the old theory, selection rules were
inferred by comparing the system with the behavior of a classical system;
that is, by employing what is called Bokr’s correspondence principle. Thus, since
a classical oscillator will emit only one frequency (and no harmonics), if a
quantum mechanical oscillator is to correspond to the classical result in the
limit of large n, then we must have the selection rule Az = +1. We had
already assumed transitions between adjacent levels in our discussion of
Planck’s oscillators in section 3 of Chapter 2.

If we treat a two-dimensional harmonic oscillator as two independent
one-dimensional oscillators in the x- and y-directions, the energy levels are

En,.n, = ﬁ(na:ww + nwwu)'
If the oscillator is isotropic (k, = £,), then w, = w, = w, and
E, = nko,

where n = n, + n,. But n = 1 now corresponds to the two states (n, = 0,
n, = 1) and (n, = 1, n, = 0), which have the same energy. The two states
are said to be degenerate. In general, the level of energy E, is (n + 1)-fold
degenerate. Similarly, the energy of the n'* level of a three-dimensional iso-
tropic oscillator is also given by Equation 4.2 with n = n, + n, + n,. The
degeneracy in this case is $(z 4 1)(n + 2).

Duane and Compton® applied the Wilson-Sommerfeld method to a
corpuscular model for the diffraction of x-rays by a crystal. If the z-direction
is normal to a set of identical atomic planes of separation 4, then the quantum
condition becomes

jgp, dz =fdp, dz = p, d = nh, 4.3)
0

in the absence of forces. A photon of momentum £/2 incident at the angle 0,
as shown in Figure 4-1, will be reflected at the same angle and will transfer an

z
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Figure 4-1 Bragg reflection of a photon p=

by a crystal.

O od

Atomic planes

¢ W, Duane, Proc. Nat. Acad. Sci. 9, 158 (1923); A. H. Compton, ibid. 9, 359 (1923).
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amount of momentum in the z-direction equal to (24/4) sin §. But the momen-
tum must satisfy the quantum conditions given by Equation 4.3, so we have

nA = 2dsin 6, (4.4)
the well-known Bragg equation. .

One can obtain the equivalent Bragg expression for electrons by letting
b, = 2mv sin 6 in Equation 4.3 to obtain

n L. 2 dsin 0. (4.5)
my

By comparing Equation 4.4 and Equation 4.5, it is apparent that the de
Broglie wavelength, 4 = &/mv, could also have been predicted by this theory.

PROBLEM 4-1

Use the Wilson-Sommerfeld method to obtain the energy
levels of a rigid rotator of angular momentum, p, = Jw,
where I is its moment of inertia about the rotation axis.
(Ans.: E, = n®i2[2].)

PROBLEM 4-2

Use the Wilson-Sommerfeld method to obtain the energy
states of a perfectly elastic particle in a cubic box of edge a
and with perfectly rigid walls.

(Ans.: E, = n®h®/8ma?, where n® = nj + nj + n.)

PROBLEM 4-3

Find the energy states of a perfectly elastic ball bouncing
in the gravitational field by applying the Wilson-Sommerfeld
quantization condition.

(Ans.: E, = (9g%2mn?[32)%.)

3. SOMMERFELD’S RELATIVISTIC THEORY OF THE
HYDROGEN ATOM

Although the Bohr theory was quite successful in predicting the spectrum
of hydrogen, there remained an unexplained fine structure or splitting of the
lines. This splitting amounts to about one part in 104 and cannot be seen in
spectrometers of low resolving power. Sommerfeld proposed that if elliptical
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Figure4-2 Relationship between
the planar and spherical coordinates.
The angle S is the azimuthal angle in
the x’<y’-plane, ¢ is the azimuthal angle
about the z-axis, and 6 is the polar
angle measured from the z-axis.

as well as circular orbits were allowed, the electron’s velocity in an orbit of
large eccentricity could become relativistic. He showed that the energy
correction resulting from the relativistic treatment was of the proper order of
magnitude to account for the fine structure splitting of hydrogen. Unfortu-
nately, Sommerfeld’s theory is not the correct explanation for the fine structure
of atomic spectra. We now know that the fine structure is due to the fact that
the electron has an intrinsic spin angular momentum which produces the so-
called spin-orbit interaction. This will be treated in detail in the discussion
of the quantum mechanical theory of radiation. In spite of the shortcomings
of the Sommerfeld theory, it is of such great historical importance that it is
worth sketching briefly here.

Consider an electron of reduced mass u to be revolving about a fixed
nucleus. Since the motion in a given orbit is confined to a plane, we will
describe the position of the ¢lectron by the planar coordinates (r, #) measured
in the plane of the orbit. In Figure 4-2, the #’, y’-plane is the plane of the orbit
and the unprimed system is used as the frame for a set of spherical polar
coordinates. The relationship between the planar angle and the spherical
coordinates is obtained by considering an infinitesimal angular displacement
df. Then the arc r dg is the hypotenuse of an infinitesimal spherical triangle
whose legs are r d0 and r sin 8 d¢. Then we have

(rdp)® = (rd6)? + (rsin 0 d¢)?, (4.6)

which we will need later in our discussion of the quantization rules.
The equation of the motion in the #', y’-plane is
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Using the fact that p, = ur?f = £ = constant, we obtain

£2 Ze?

‘ur=ﬁ§ ?

Multiplying by 7 and integrating,

L. £2 Ze?
o (%)

, £2 Ze
a_ U L
$ur ot r + E. (4.7)

or

The constant of integration E is the total energy of the system. In order
to get the path equation we eliminate the time by means of the substitution

o drdp 4 dr
Tdpdt " wrdp

Substituting this into Equation 4.7 and multiplying by 2x/#? results in

ldry 1 2uZe  2uE
(;Ed—,s) = TptTa TTa

Introducing u = 1/r,

du 1 dr 2ule? 2uE
= = = —u? nd il
- rdp i\/ w “t
and
L dp = du
uE  2uZet .
T a v
Integrating,
1 Ze? 2Z%t 2uE
u:;=ﬂﬂ \/”T +—§2“‘5m(ﬂ_/30): (4.8)

for negative total energy. The equation of an ellipse of semiaxes a and b,
eccentricity e and orientation f, is

) zrl 1 +,;(slin~(/3€2)— B) _L 4 _____V“zb:”z sin (8 — fa),

where bja = V1 — & Comparing this with Equation 4.8 we immediately
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obtain the following results:

_ Ze?
Y}
¢
b = == 4’.9
vV —2uE (+9)

PROBLEM 4-4

Show that the time averages of 7" and V satisfy the same
relation as that satisfied by circular Bohr orbits, namely,
E=4V=-T

Applying the quantization condition given in Equation 4.1 to the planar
angle and the three spherical coordinates, we have

561),3 df = kh (4.10a)
§P¢ d$ = mh (4.10b)
fﬁpa d6 = ngh (4.10c)
ffp, dr = n,h (4.10d)

Equation 4.10a can be integrated immediately since py = £ = constant, and
the axis about which £ is measured is fixed in space. Then,

pp = £ = kh. (4.11a)
Similarly, p, is a constant and the z-axis about which it is measured is fixed, so
by = mh. (4.11b)

The quantum number m is called the magnetic quantum number because of the
role it plays in distinguishing the energy levels of the atom in the presence of a
magnetic field. Since the axis about which p, is measured is neither unique
nor stationary, we must transform Equation 4.10c before it can be integrated.
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If Equation 4.6 is multiplied by u/dt, we obtain

urtf dp = wr*sin? 0 - ¢ dé + ur26 do,
or

DpdB = pg dd + po db.

Substituting this into Equation 4.10c,

$ (£0d8 — ps d4) = nah = (k — mh,
or, :
k =ny + m. (4.11c)
The integer £k is called the azimuthal quantum number. It can take on the
values 1, 2, 3, . . ., with zero excluded.
Sommerfeld’s integration of Equation 4.10d will not be repeated here but
we will merely state his result, namely,

1
k/z(——————— — 1) = n,h,
V1 — e

or
(4.11d)

The quantity # in the last expression is called the total quantum number, since it
is defined as the sum of the radial and azimuthal quantum numbers, which
is to say that

n=n,+ ng -+ m.

Combining Equations 4.9, 4.11a, and 4.11d, we obtain the equalities

a nh Ze? —_,u

b ¢ = ¢N2E’

from which the quantized orbits and energies are given by:

_ ey
a=—,
b =1£1 ___knao
n zZ’
and (4.12)
E,, = - woazzs ‘
n

where the constants ¢, and w, were defined in section 4 of Chapter 3. Note
that the semimajor axis, 4, is the counterpart of the radius of a circular orbit



SOMMERFELD’S RELATIVISTIC THEORY 19

n=
Q -
a, b=

=~

([l

——
~
b
o b

T
L

n=3
k=3

Figure 4-3 Sommerfeld’s orbits for n = |, 2, and 3.

in the Bohr theory. Furthermore, the energy of an orbit is independent of
the value of the semiminor axis. This means that all of the orbits of different
eccentricities associated with the same n value are degenerate. A few of these
orbits are depicted in Figure 4-3.

It was at this point that Sommerfeld introduced a relativistic correction
for the mass of the electron. For an orbit of large eccentricity the electron
would pass close to the nucleus at a very high velocity such that the relativistic
increase of mass would become noticeable. With this refinement to the theory
the revised energies become

w2z a2z (1 _ i)]
E, - -2 [1 + =2 | (4.13)
The quantity
= 7997 x 107 ~
R 7R A ¥ T

is called the fine structure constant since the term in Equation 4.13 in which «
appears, correctly accounted for the fine structure splitting of the lines of the
hydrogen spectrum.

Although the old quantum theory achieved many successes in atomic and
molecular spectroscopy, it was an incomplete theory in the sense that none
of its recipes for quantization were derived from first principles. Since it
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could not be applied to aperiodic systems, most collision and scattering
problems were beyond its pale. Furthermore, it contained errors, contradictions,
and ambiguities.” It did have some virtues, however. It predicted a large
body of experimental results from a few simple rules, and it set the stage for the
new quantum mechanics which soon replaced it. We will now proceed to
discuss the wave mechanics of de Broglie and Schrodinger.

4. THE WAVE NATURE OF PARTICLES

The idea of associating both a wave and particle nature with the electron
was first proposed by de Broglie in his doctoral thesis in 1925.8 His-work was
motivated by the mystery of the Bohr orbits, which he attempted to explain
by fitting a standing wave around the circumference of each orbit. Thus,
de Broglie required that nd = 277, where 1 is the wavelength associated with
the n orbit and 7 is its radius. Combining this with Equation 3.25 we immedi-
ately obtain the result that
h
mo

A:

>

Assuming the existence of a natural symmetry in the properties of matter and
energy, he proposed that a material particle of total energy £ and momentum p
must be accompanied by a phase wave, analogous to that ascribed to the
photon, whose wavelength is given by A = &/p and whose frequency is given
by the Planck formula, » = E/h. The Planck and de Broglie relations may be
expressed in the useful forms,
E =jw
and (4.14)
b =k,

where i = h[2m, k = 2n[A, and @ = 2m.

. The physical nature of such a particle wave was not clearly described by
de Broglie. Unlike a classical wave, the energy E of the particle wave is not
thought of as spread out over the extent of the wave, but is regarded as localized
with the particle. However, the accompanying wave is essential in order to
account for the phenomena of interference and diffraction.

The concept of the de Broglie wavelength is one of the cornerstones of
modern quantum theory, and the simple relationship

A =

e

holds for photons as well as for both relativistic and non-relativistic material
particles, provided that the appropriate expression for p is used. '

7 Albert Messiah, Quantum Mechanics, North-Holland Publishing Co., Amsterdam (1958),
Chapter 1.
8 L. de Broglie, Ann. Phys. (Paris) 3, 22 (1925).



