Infrared emission in metal-halide arc lamps

D J Smith, G A Bonvallet and J E Lawler University of Wisconsin-Madison

55th Annual Gaseous Electronics Conference 15-18 October, 2002, Minneapolis

HID lamps – IR losses

- Understand and control the infrared (IR) losses in commercial high-intensity discharge (HID) lamps
- Determine the total IR power output up to the fused silica limit (~3.5µm)
- Identify the major contributions to losses in the IR
 - Initially Osram Sylvania 250W Metalarc lamp (Na Sc chemistry)
 - Custom Philips HID lamp (rare earth chemistry)

The Lamp

- Osram Sylvania '250W Metalarc' lamp
 - Metal-halide lamp
 - Scandium, Sodium, Caesium, Thorium
- Visible emission spectrum dominated by Sc I
- Lamp chamber is anodized Al with MgF₂ window to allow through the IR
 - chamber pressure of ~15 mTorr

Experiment - optical set-up **f**₂' 12.5 cm 4.5 cm-FTIR spectrometer \mathbf{f}_2

external optics encased to ensure dry, CO₂-free air

- <u>Field lens</u> is used to image the arc lamp onto the slit
 - provides excellent spatial resolution
- <u>Lamp is translated</u> on a X-Z translation stage to allow measurements of emission for <u>both radial and</u> <u>longitudinal</u> information
- Impact parameter is unaffected by the arc tube in emission measurements

- Fourier transform infrared (FTIR) spectrometer
 - $\sigma = 25,000-100 \text{ cm}^{-1}$
 - MgF₂ window limits the experiment to 1,000 cm⁻¹
 - ultimately replace with CaF₂ to measure further into the IR (blackbody radiation)
- Spatially-averaged measurements in the visible, near IR and mid IR
- Spatially-resolved measurements in the near IR
- External optics encased to ensure dry, CO₂-free air

Spatially-averaged near IR emission (uncorrected spectrum)

Spatially-resolved near IR measurements (uncorrected spectrum)

Corrected spatially-resolved near IR measurements

GEC02

Spatially-averaged mid IR, $\sigma = 7,100-1,000$ cm⁻¹

Beyond 4,000 cm⁻¹

- Near IR losses dominated by Na I emission we require accurate knowledge of the
 - density of the ground state of Na
 - absorption measurements using the synchrotron radiation source
 - temperature profile, assuming LTE
 - Boltzmann analysis of the absorption data and emission spectra
 - transition probabilities for the important IR transitions

Spatially-resolved emission: Abel Inversion

Spatially-resolved emission: Abel Inversion

The intensity measured along a line-of-sight, whose point of closest approach is y.

$$I(y) = \frac{\sqrt{\pi}}{\sqrt{1 - y^2}} \frac{a \exp\left\{-b\frac{y^2}{1 - y^2}\right\}}{\sqrt{b}}$$

We may then fit this equation to the observed data as a function of impact parameter to <u>obtain numerical values of the parameters a and b</u>.

This gives us n(r)

Fitted I(y) assuming a Gaussian profile for the excited-state densities

 $E_k = 16,022 \text{ cm}^{-1}$ a = 1.235, b = 0.5992 $E_j = 21,086 \text{ cm}^{-1}$ a = 0.5042, b = 2.463 GEC02

0.6

0.8

1

IR power loss

The total power radiated on a given kJ transition is given by

$$P(\lambda_{kJ}) = \int_{V} n_{k}(r, l) A_{kJ} hc \sigma_{kJ} dV$$

which can be expressed in terms of $n_0(r)$ and T(r), where A_{kJ} is known

$$P(\lambda_{kJ}) = A_{kJ}hc\sigma_{kJ} \int_{r=0}^{0.75cm} \frac{g_k}{g_0} n_0(r) \exp\left\{-\frac{E_k}{kT(r)}\right\} 2\pi r dr$$

Total IR power loss

- From absorption/emission measurements:
 - total near IR atomic and molecular losses $\sim 10-15$ W
 - the 3p-3d Na I lines contribute ~ 1 W
 - the 3p-4s Na I lines contribute ~ 3 W
- From thermopile measurements:
 - total near IR atomic and molecular losses ~ 60 W
 - blackbody losses ~ 55-60 W
 - visible emission ~ 85 W
 - UV losses $\sim 45 \text{ W}$

Power balance - blackbody radiation

e = 0 for $\lambda < 3.5 \mu m$, $e \sim 1$ for $\lambda > 3.5 \mu m$

GEC02

- Na I dominates atomic emission in the near IR
- Discrepancy between calculated near IR power loss by
 - thermopile measurements (~ 60 W)
 - results calibrated to absorption measurements (~ 10-15 W)
- Blackbody radiation contributes a further 60 W to the IR losses

Planned future work

- Resolve the discrepancy
- Extend techniques to custom research lamps
- Compare the IR power / lumen output between Scandium-based lamps and rare-earth lamps

Acknowledgments

This work is part of the ALITE-II program. We are grateful for the support of EPRI, General Electric and Philips

