Today: Quantum mechanics

- The quantum mechanical world is VERY different!
 - Energy not continuous, but can take on only particular discrete values.
 - Light has particle-like properties, so that light can bounce off objects just like balls.
 - Particles also have wave-like properties, so that two particles can interfere just like light does.
 - Physics is not deterministic, but events occur with a probability determined by quantum mechanics.

Exam 2 scores

<table>
<thead>
<tr>
<th>Score</th>
<th>Number of Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>AB</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
</tr>
<tr>
<td>BC</td>
<td>10</td>
</tr>
<tr>
<td>BC</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
</tr>
</tbody>
</table>

MEAN = 68%

Course essay

- Wednesday, next week:
 - Due in class — essay topic
 - Short description
 - Journal article

- Wednesday, Nov. 16
 - Due in class — essay outline
 - Main article reference

- Monday, Dec. 5
 - Due in class — final typed essay.

Origins of quantum mechanics

- Late 1800s:
 - Maxwell’s equations describe propagation of EM waves in exquisite detail.
 - Electricity and magnetism progress from basic science to technological applications.

- Early 1900s:
 - Further investigations into light, and interaction of light with matter, hint at some scary ideas

 Photoelectric effect, Blackbody radiation spectrum, say that energy is quantized in discrete units.

Energy quantization in a pendulum

Swinging pendulum. Larger amplitude, larger energy

- Small energy
- Large energy

Quantum mechanics:
- Not every swing amplitude is possible
- Energy cannot change by arbitrarily small steps

Energy quantization

- Energy can have only certain discrete values

Energy states are separated by $\Delta E = h f$.
- f = frequency
- h = Planck’s constant = 6.626×10^{-34} J-s

$\Delta E = h f = 3.3 \times 10^{-34}$ J for pendulum
- $\Delta E_{\text{min}} = hf = 3.3 \times 10^{-34}$ J << 2 J
- Quantization not noticeable

Suppose the pendulum has
- Period = 2 sec
- Freq = 0.5 cycles/sec

- $E = mgd = (1 \text{ kg})(9.8 \text{ m/s}^2)(0.2 \text{ m}) = 2 \text{ Joulies}$
- $\Delta E = hf = 3.3 \times 10^{-34} \text{ J} < 2 \text{ J}$
Energy of light

- Quantization also applies to other physical systems
 - In the classical picture of light (EM wave), we change the brightness by changing the power (energy/sec).
 - This is the amplitude of the electric and magnetic fields.
 - Classically, these can be changed by arbitrarily small amounts

Quantization of light

- Quantum mechanically, brightness can only be changed in steps, with energy differences of hf.
- Possible energies for green light ($\lambda=500$ nm)
 - One quantum of energy: one photon
 - Two quanta of energy two photons
 - etc
- Think about light as a particle rather than wave.

One quantum of green light

- One quantum of energy for 500 nm light

 $$E = hf = \frac{hc}{\lambda} = \frac{(6.634 \times 10^{-34} J \cdot s) \times (3 \times 10^8 m/s)}{500 \times 10^{-9} m} = 4 \times 10^{-19} J$$

 Quite a small energy!
 Quantum mechanics uses new ‘convenience unit’ for energy:
 1 electron-volt = 1 eV = |charge on electron| x (1 volt) = (1.602x10^{-19} C) x (1 volt) = 1.602x10^{-19} J

 In these units,
 $$E(1 \text{ photon green}) = (4 \times 10^{-19} J / 1.602 \times 10^{-19} J) = 2.5 \text{ eV}$$

Simple relations

- Translation between wavelength and energy has simple form in electron-volts and nano-meters

 Green light example:

 $$E = \frac{hc}{\lambda} = \frac{1240 \text{ eV} \cdot \text{nm}}{500 \text{ nm}} = 2.5 \text{ eV}$$

How many photons can you see?

In a test of eye sensitivity, experimenters used 1 milli-second (0.001 s) flashes of green light. The lowest power light that could be seen was 4×10^{-14} Watt.

How many green (500 nm, 2.5 eV) photons is this?

A. 10 photons
B. 100 photons
C. 1,000 photons
D. 10,000 photons

Or could say...

- Light comes in particles called photons.
- Energy of one photon is $E=hf$

 $$f = \text{frequency of light}$$

- Photon is a particle, but moves at speed of light!
 - This is possible because it has zero mass.

- Zero mass, but it does have momentum:
 - Photon momentum $p=E/c$
But light is a wave!
- Light has wavelength, frequency, speed
 - Related by $f \lambda = \text{speed}$.
- Light shows interference phenomena
 - Constructive and destructive interference

Wave behavior of light: interference

Particle behavior of light: photoelectric effect
- A metal is a bucket holding electrons
- Electrons need some energy in order to jump out of the bucket.
 - Light can supply this energy.
 - Energy transferred from the light to the electrons.
 - Electron uses some of the energy to break out of bucket.
 - Remainder appears as energy of motion (kinetic energy).

Unusual experimental results
- Not all kinds of light work
- Red light does not eject electrons
 - More red light doesn’t either
 - No matter how intense the red light, no electrons ever leave the metal
 - Until the light wavelength passes a certain threshold, no electrons are ejected.

Wavelength dependence
- Short wavelength: electrons ejected
 - Long wavelength: NO electrons ejected
- Hi-energy photons
 - Lo-energy photons

Einstein’s explanation
- Einstein said that light is made up of photons, individual ‘particles’, each with energy hf.
 - One photon collides with one electron - knocks it out of metal.
 - If photon doesn’t have enough energy, cannot knock electron out.
 - Intensity ($= \#$ photons $/$ sec) doesn’t change this.
 - Minimum frequency (maximum wavelength) required to eject electron
explained by quantization of light

- Light comprised of discrete particles (photons)
- Each photon has energy hf
 ($h =$ Planck’s constant)

Photoelectric effect

- Explained by quantized light.
- Red light is low frequency, low energy.
- (Ultra)violet is high frequency, high energy.

- Red light will not eject electron from metal, no matter how intense.
 - Single photon energy hf is too low.
- Need ultraviolet light

Intensity of light

- Photon of frequency f has energy hf
- Red light made of only red photons
- The intensity of the beam can be increased by increasing the photon flux.

Interaction with matter

- Photons are absorbed one at a time
- Interaction depends on individual photon frequency / energy.

Photon Energy

A red and green laser are produce light at a power level of 2.5mW. Which one produces more photons/second?

A. Red
B. Green
C. Same

Red light has less energy per photon so needs more photons!

Nobel Trivia

For which work did Einstein receive the Nobel Prize?

A. Special Relativity: $E=mc^2$
B. General Relativity: gravity bends Light
C. Photoelectric Effect & Photons

Why so important?

- Makes behavior of light wave quite puzzling.
- Said that one photon interacts with one electron, electron ejected.
- If this wavefront represents one photon, where is it?
- Which electron does it interact with?
- How does it decide?
Neither wave nor particle

- Light in some cases shows properties typical of waves
- In other cases shows properties we associate with particles.

Conclusion:
- Light is not a wave, or a particle, but something we haven’t thought about before.
- Reminds us in some ways of waves.
- In some ways of particles.

Photon interference?

Do an interference experiment again. But turn down the intensity until only ONE photon at a time is between slits and screen.

Is there still interference?

Single-photon interference

1/30 sec exposure
1 sec exposure
100 sec exposure

- P.A.M. Dirac (early 20th century):
 - “… each photon interferes with itself. Interference between different photons never occurs.”

We now can have ‘coherent’ photons in a laser, (Light Amplification by Stimulated Emission of Radiation) invented 40 years ago.

These photons can in fact interfere.

Probabilities

- We detect absorption of a photon at camera.
- Cannot predict where on camera photon will arrive.
- Position individual photon hits is determined probabilistically.
- Photon has a probability amplitude through space. Square of this quantity gives probability that photon will hit particular position on detector.
- The photon is a probability wave!

The Black Body spectrum

- Light radiated by an object characteristic of its temperature, not its surface color.
- Spectrum of radiation changes with temperature.
Spectrum changes with temperature

- The wavelength of the peak of the blackbody distribution was found to follow
 \[\lambda_{\text{max}} = \text{constant} \frac{1}{\text{Temperature}} \]
- Peak wavelength shifts with temperature
 - \(\lambda_{\text{max}} \) is the wavelength at the curve’s peak
 - \(T \) is the absolute temperature of the object emitting the radiation

The ‘color’ of a black body

- Eye interprets colors by mixing cone responses.
- Different proportions make object appear different colors.

‘Orange’ hot

- Temperature = 4000 K
- Combine three cone responses
 - Long-wavelength cone weighted most heavily

‘White’ hot

- Temperature = 5000 K
- Spectrum has shifted so that colors are more equally represented — white hot

Representation on color chart

- Apparent color of blackbody at various temperatures.

Classical theory

- Classical physics had absolutely no explanation for this.
- Only explanation they had gave ridiculous answer.
- Amount of light emitted became infinite at short wavelength
 - Ultraviolet catastrophe
Explanation by quantum mechanics

- Blackbody radiation spectrum could only be explained by quantum mechanics.
- Radiation made up of individual photons, each with energy (Planck’s const)\(\times\)frequency).
- Very short wavelengths have very high energy photons.
- Minimum energy is 1 photon.
- For shorter wavelength’s even 1 photon is too much energy, so shortest wavelengths have very little intensity.