From Last Time...

- Hydrogen atom:
 - One electron orbiting around one proton (nucleus)
 - Electron can be in different "quantum states"
 - Quantum states labeled by integer $n=1, 2, 3, 4, ...$
 - In each different quantum state, electron has:
 - Different orbital radius
 - Different energy
 - Different wavelength
 - $n=1$ is lowest energy state, energy depends on state as $\frac{13.6}{n^2} \text{eV}$

But why?

- Why should only certain orbits be stable?
- Bohr had a complicated argument based on "correspondence principle"
 - That quantum mechanics must agree with classical results when appropriate (high energies, large sizes)
- But incorporating wave nature of electron gives a natural understanding of these "quantized orbits"

Resonance

- Most physical objects will vibrate at some set of natural frequencies
 - Ringing bell
 - Wine glass
 - Musical instrument
- The electrons in an atom analogous to sound waves in a musical instrument.
- In instrument, only certain pitches produced, corresponding to particular vibration wavelengths.
- Since the electrons orbiting around the nucleus are waves, only certain wavelengths are allowed.

Resonance on a string

- Easier to think about in a normal wind instrument, or vibrations of a string.
- Wind instrument with particular fingering plays a particular pitch, particular wavelength.
- Guitar string vibrates at frequency, wavelength determined by string length.

\[f = \frac{v}{\lambda} \]

\[
\begin{align*}
\text{Fundamental,} & \quad \text{wavelength } 2L/1=2L, \quad \text{frequency } f \\
1\text{st harmonic,} & \quad \text{wavelength } 2L/2=4L, \quad \text{frequency } 2f \\
2\text{nd harmonic,} & \quad \text{wavelength } 2L/3, \quad \text{frequency } 3f
\end{align*}
\]

Resonances of a string

String resonant frequency

A string has a fundamental frequency of 440 Hz. I now decreases the length of the string to 1/2 of it’s original length. The fundamental frequency is now

- A. 440 Hz, unchanged
- B. 220 Hz
- C. 880 Hz

Resonant wavelength has decreased by factor of 2. Since $f = v/\lambda$, frequency has gone up by factor of two.
Electron waves in an atom

- Electron is a wave.
- In the orbital picture, its propagation direction is around the circumference of the orbit.
- Wavelength = \(\frac{h}{p} \) (p=momentum, and energy determined by momentum)
- How can we think about waves on a circle?

Waves on a circle

- Here is my ‘Tonehut’
 - Like a flute, but in the shape of a doughnut.
 - Produces particular pitch.
 - Air inside must be vibrating at that frequency
 - Sound wave inside has wavelength \(\lambda = \frac{v}{f} \) (red line).
 - What determines the frequency/wavelength of the sound?

Waves on a ring

- Condition on a ring slightly different.
- Integer number of wavelengths required around circumference.
- Otherwise destructive interference occurs when wave travels around ring and interferes with itself.

Electron standing-waves on an atom

- Electron wave extends around circumference of orbit.
- Only integer number of wavelengths around orbit allowed.
These are the five lowest energy orbits for the one electron in the hydrogen atom.

- Each orbit is labeled by the quantum number \(n \).
- The radius of each is \(n^2a_0 \).
- Hydrogen has one electron: the electron must be in one of these orbits.
- The smallest orbit has the lowest energy. The energy is larger for larger orbits.

Here the electron is in the \(n=3 \) orbit.

- Three wavelengths fit along the circumference of the orbit.
- The hydrogen atom is playing its third highest note.

Here the electron is in the \(n=4 \) orbit.

- Four wavelengths fit along the circumference of the orbit.
- The hydrogen atom is playing its fourth highest note (lower pitch than \(n=3 \) note).

Here the electron is in the \(n=5 \) orbit.

- Five wavelengths fit along the circumference of the orbit.
- The hydrogen atom is playing its next lowest note.
- The sequence goes on and on, with longer and longer wavelengths, lower and lower notes.

Wavelength gets longer in higher \(n \) states, (electron moving slower) so kinetic energy goes down.

But energy of Coulomb interaction between electron (-) and nucleus (+) goes up faster with bigger \(n \).

End result is

\[
E_n = \frac{13.6}{n^2} \text{ eV}
\]
Another question

Here is Donald Lipski’s sculpture ‘Nail’s Tail’ outside Camp Randall Stadium. What could it represent?

A. A pile of footballs
B. “I’m just glad it’s not my money”
 - Ken Kopp (New Orlean’s Take-Out)
C. “I hear it’s made of plastic. For 200 grand, I’d think we’d get granite”
 - Tim Stapleton (Stadium Barbers)

The wavefunction

- Our explanation of the hydrogen atom originated from wave nature of electron.
- The electron wave is a standing wave around the circumference of the orbit.
- For each quantum state, there is a wavefunction associated with the electron.
- This is not unique to the hydrogen atom.

General aspects of Quantum Systems

- System has set of quantum states, labeled by an integer (n=1, n=2, n=3, etc)
- Each quantum state has a particular frequency and energy associated with it.
- These are the only energies that the system can have: the energy is quantized
- Analogy with classical system:
 - System has set of vibrational modes, labeled by integer fundamental (n=1), 1st harmonic (n=2), 2nd harmonic (n=3), etc
 - Each vibrational mode has a particular frequency and energy.
 - These are the only frequencies at which the system resonates.

Example: ‘Particle in a box’

Particle confined to a fixed region of space e.g. ball in a tube- ball moves only along length L

- Classically, ball bounces back and forth in tube.
- No friction, so ball continues to bounce back and forth, retaining its initial speed.
- This is a ‘classical state’ of the ball.
- Could label each state with a speed, momentum=(mass)x(speed), or kinetic energy.
- Any momentum, energy is possible.
- Can increase momentum in arbitrarily small increments.

Quantum Particle in a Box

- In Quantum Mechanics, ball represented by wave
 - Wave reflects back and forth from the walls.
 - Reflections cancel unless wavelength meets the standing wave condition: integer number of half-wavelengths fit in the tube.

\[\lambda = 2L \]

One half-wavelength

\[p = \frac{h}{\lambda} = \frac{h}{2L} = p_n \]

\[\lambda = L \]

Two half-wavelengths

\[p = \frac{h}{\lambda} = \frac{h}{L} = 2p_n \]

Particle in box question

A particle in a box has a mass m. It’s energy is all energy of motion = \(p^2/2m \).
We just saw that it’s momentum in state n is \(np_n \).
It’s energy levels

A. are equally spaced everywhere
B. get farther apart at higher energy
C. get closer together at higher energy.
Quantized energy levels

- Quantized momentum
 \[p = \frac{\hbar}{\lambda} = n\frac{\hbar}{2L} \]
- Energy = kinetic
 \[E = \frac{p^2}{2m} = \left(\frac{np}{L}\right)^2 = n^2E_o \]
- Or Quantized Energy
 \[E_n = n^2E_o \]

The wavefunction of a particle

- We use a probabilistic interpretation
 - The wavefunction \(\Psi(x) \) (psi) of a particle describes the extended, wave-like properties.
 - The square magnitude of the wavefunction \(|\Psi|^2 \) gives the probability of finding the particle at a particular spatial location.
- Similar to the interpretation used for light waves
 - Square of the electric field gives light intensity = number of photons / second.

Particle in a box: Wavefunctions

Wavefunction

- Ground state wavefunction and probability.
- Height of probability curve represents likelihood of finding particle at that point.

Next highest energy state

Wavefunction

- Now here is something unusual.
 - In the middle of the box, probability of finding the particle is ZERO!
 - How can we understand this?

Understanding Probability

- **Heads** vs **Tails**

<table>
<thead>
<tr>
<th>Heads</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tails</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1/6</td>
</tr>
</tbody>
</table>

Discrete vs continuous

- **“Continuous”** probability distribution
Particle in a box: Wavefunctions

Wavefunction Probability

Third state

Next higher state

Lowest energy state

Probability of finding electron

- Classically, equally likely to find particle anywhere
- QM - true on average for high n

Quantum Corral

- 48 Iron atoms assembled into a circular ring.
- The ripples inside the ring reflect the electron quantum states of a circular ring (interference effects).