Exam Review: Topics by chapter

- Chap. 13: Principles of quantum mechanics
 - Light quantization, matter waves.
- Chap. 14: Uses of quantum mechanics
 - Hydrogen atom, the wavefunction, uncertainty principle, entanglement.
- Addl. Topics: More quantum mechanics
 - Spin, indistinguishability & symmetry, solids, superconductivity
- Chap. 15: Physics of the nucleus
 - Structure of nucleus, radioactive decay, half-life
- Chap. 16: Fission and fusion
 - Fission, fusion, nuclear weapons, reactors

Hour Exam 3 Review

- Hour Exam 3: Wednesday, Nov. 30
- In-class (2241 Sterling Hall)
- Twenty multiple-choice questions
- Will cover: 13 (Basic Quantum Mechanics), 14 (Uses of Quantum Mechanics), Addl. Lecture Material (Symmetry, solids, superconductivity) 15, 16.1-16.5 (The nucleus, fission & fusion)
- This is Lectures 22-33
- You should bring
 - Your student ID
 - 1 page notes, written double sided
 - Calculator
 - Pencil for marking answer sheet

Chap. 13: Quantum Mechanics

- Quantization of light
 - Light comes in discrete clumps (photons)
 - Light shows both particle and wave-like properties
 - Evidence for particle properties is photoelectric effect & black-body radiation
- Matter waves
 - Matter shows both particle and wave-like properties
 - deBroglie wavelength = Planck’s constant / momentum
 - Evidence for wave properties is interference and diffraction

Photoelectric effect summary

- Light is made up of photons, individual ‘particles’, each with energy $hf = \frac{hc}{\lambda}$
- One photon collides with one electron - knocks it out of metal.
- If photon doesn’t have enough energy, cannot knock electron out.
- Intensity (= # photons / sec) doesn’t change this.

Minimum frequency (maximum wavelength) required to eject electron

<table>
<thead>
<tr>
<th>A. 300 nm</th>
<th>B. 500 nm</th>
<th>C. 700 nm</th>
</tr>
</thead>
</table>

An electron is bound inside copper by a ‘binding energy’ of 4 eV.
Which wavelength will eject electrons from copper?

Minimum photon energy to eject electron is 4 eV. Corresponding photon energy is given by

$4.0 \text{ eV} = \frac{hc}{\lambda} = \frac{1240 \text{ eV \cdot nm}}{\lambda \text{ nm}}$

So $\lambda_{\text{max}} = 310 \text{ nm}$

Topic: Wave properties of matter

- All objects show both wave-like properties and particle-like properties.
- Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete photons of energy hf (particle-like properties)
- Matter clearly shows particle-like properties, but also shows interference and diffraction effects (wave-like properties).
Matter waves

- If light waves have particle-like properties, matter should have wave properties.
- de Broglie postulated that the wavelength of matter is related to momentum as $\lambda = \frac{h}{p}$
- This is called the de Broglie wavelength.

Matter wave question

A neutron has almost 2000 times the rest mass of an electron. Suppose they both have 1 ev of energy. How do their wavelengths compare?

A. both same
B. neutron wavelength < electron wavelength
C. neutron wavelength > electron wavelength

Wavelength depends on momentum, as h/p. Same momentum -> same wavelength. $Momentum = \sqrt{2mE}$, depends on energy AND mass

Chap. 14: Using Quantum Mechanics

- Quantum states in a hydrogen atom
 - Models of the hydrogen atom
 - Absorption and emission of light (line spectra)
- The wavefunction of a quantum state
 - The ground state and excited states
 - Probabilistic interpretation of the wavefunction.
- Heisenberg uncertainty principle
 - Position and momentum cannot be known simultaneously
 - Consequence of wave properties
- Quantum jumps and entanglement

Topic: The hydrogen atom

- Hydrogen atom:
 - One electron orbiting around one proton (nucleus)
 - Electron can be in different “quantum states”
 - Quantum states determined by wave condition
 - Quantum states labeled by integer n
 - In each different quantum state, electron has
 - Different orbital radius
 - Different energy
 - Different wavelength
 - $n=1$ is lowest energy state, energy depends on state as $E_n = \frac{13.6}{n^2} \text{ eV}$

Energy levels

- Instead of drawing orbits, we can just indicate the energy an electron would have if it were in that orbit.
Emitting and absorbing light

Emitting a photon of correct energy makes electron jump to higher quantum state.

\[
E_{21} = E_2 - E_1
\]

Absorbing a photon of correct energy makes electron jump to lower quantum state.

\[
E_{21} = E_2 - E_1
\]

Line spectra

- This says that gases such as Hydrogen emit light only at certain frequencies, wavelengths.
- The photon energies correspond to separations between the energy levels.

Spectral Question

Compare the wavelength of a photon produced from a transition from \(n=3 \) to \(n=1 \) with that of a photon produced from a transition \(n=2 \) to \(n=1 \).

A. \(\lambda_{31} < \lambda_{21} \)

B. \(\lambda_{31} = \lambda_{21} \)

C. \(\lambda_{31} > \lambda_{21} \)

Eenergetic \(E_{31} > E_{21} \) so \(\lambda_{31} < \lambda_{21} \)

Topic: The wavefunction

- Particle can exist in different quantum states, having
 - Different energy
 - Different momentum
 - Different wavelength

- The quantum wavefunction describes wave nature of particle.
- Square of the wavefunction gives probability of finding particle.
- Zeroes in probability arise from interference of the particle wave with itself.

Particle in a box: Wavefunctions

- Ground state wavefunction and probability.
- Height of probability curve represents likelihood of finding particle at that point.

Probability of finding electron

- Classically, equally likely to find particle anywhere
- QM - true on average for high \(n \)

Quantum-mechanical distribution

Classical distribution

\[P = \frac{1}{L} \quad 0 < x < L \]

Zeroes in the probability! Purely quantum, interference effect
Quantum Corral

- 48 iron atoms assembled into a circular ring.
- The ripples inside the ring reflect the electron quantum states of a circular ring (interference effects).

Wavefunction: Particle in a Box

- In Quantum Mechanics, ball represented by wave
 - Wave reflects back and forth from the walls.
 - Reflections cancel unless wavelength meets the standing wave condition:
 integer number of half-wavelengths fit in the tube.

\[\lambda = L \]
Two half-wavelengths

\[\lambda = 2L \]
One half-wavelength

\[p = \frac{h}{\lambda} \]

Topic: Uncertainty Principle

- Heisenberg Uncertainty principle
- Arises from wave nature of particles.
- Precise position & momentum cannot be measured at the same time.
- Highly accurate momentum (wavelength) means position is uncertain
- Can localize particle by superimposing many wavelengths, so momentum is uncertain.
- Quantum mechanical tunneling.

Uncertainty in Quantum Mechanics

Position uncertainty = \(L \)

(Since \(\lambda = 2L \))

Momentum uncertainty from

\[\frac{h}{\lambda} \] \to \frac{h}{\lambda} + \frac{h}{\lambda} = \frac{2h}{\lambda} \]

Reducing the box size reduces position uncertainty, but the momentum uncertainty goes up!

The product is constant:

(position uncertainty)(momentum uncertainty) \(\approx h \)

Quantum-mechanical tunneling

Atomic clock question

Suppose we changed the ammonia molecule so that the distance between the two stable positions of the nitrogen atom INCREASED. The clock would

- A. slow down.
- B. speed up.
- C. stay the same.
Topic: Quantum jumps & entanglement
- ‘Philosophical’ effects in quantum mechanics
- Interpretation of the wave function:
 - Calculation using the basic premises of quantum mechanics give highly accurate results...
 - ...but what does it mean?
- Superposition of quantum states
- Entanglement, action at a distance
- Copenhagen interpretation
 - ‘collapse of the wavefunction’

Additional Lecture Material
- Spin
 - An additional quantum property of a particle
- Indistinguishability and symmetry
 - Fermions and Bosons
 - Pauli exclusion principle
- Physics of solids
 - Energy bands in a solid
 - Metals, insulators, and semiconductors
 - Superconductors

Topic: spin
- Free electron, by itself in space, not only has a charge, but also acts like a bar magnet with a N and S pole.
- Since electron has charge, could explain this if the electron is spinning.
- Then resulting current loops would produce magnetic field just like a bar magnet.
- But...
 - Electron in NOT spinning.
 - As far as we know, electron is a point particle.

Topic: Indistinguishability & symmetry
- Several important conceptual aspects of quantum mechanics
- Indistinguishability
 - particles are absolutely identical
 - Leads to Pauli exclusion principle (one Fermion / quantum state).
- Symmetry
 - Charactizes the wavefunctions
 - Leads to different energy levels.

Spin and symmetry
- In both cases the probability is preserved, since it is the square of the wavefunction.
- Can be shown that
 - Integer spin particles (e.g. photons)
 have symmetric wavefunctions
 These types of particles are called **Bosons**
 - Half-integer spin particles (e.g. electrons)
 have antisymmetric wavefunctions
 These types of particles are called **Fermions**

Topic: Physics of solids
- Solids are large numbers of atoms arranged in a regular **crystal structure**.
- Each atom has electron quantum states, but interactions shift the energies.
- End result is each type atomic electron state (e.g. 1s) corresponds to a broadened ‘band’ of energy levels in a solid.
- Band filling determines electrical properties
 - Partially full bands = metal
 - Bands completely full or empty = insulator / semiconductor
- Substitutional doping of a semiconductor leads to a material useful in electronic devices.
A six-atom molecule

Wavefunctions

Energy levels

Can see different wavelengths for the different molecular states

Energy levels in a solid

• Solids consist of $\sim 10^{24}$ atoms
• Energy levels spaced extremely close together

3-atom molecule 6-atom molecule 10^{24}-atom ‘molecule’

Solid sodium (metal)

Na = [Ne]3s

$3p$

$3s$

1 electron

$2p$

6 electrons

$2s$

2 electrons

$1s$

2 electrons

Sodium atom Sodium metal

Metals, insulators, semiconductors

Metal (at least one partially full band)

Insulator (all bands completely full or empty)

Semiconductor (insulator with small energy gap)

• Only partially full bands carry current
• Completely full, or completely empty bands, carry no current

Doped semiconductors

• Semiconductors become useful when they are doped.
• Different atom is substituted for Si.
• Possibilities: one extra electron, one fewer electron.

Here an atom with an extra electron is substituted for Si

Topic: Superconductivity

• Superconductor = zero-resistance material
• Many elements are superconducting
• Meissner effect = exclusion of magnetic field
 - Leads to superconducting levitation
• Critical temperature, critical current, critical magnetic field - range of usefulness.
• Most critical temperatures far below room T.
• High-temperature superconductors discovered with transition temp near liquid nitrogen.
Superconductivity

- Superconductors are materials that have exactly zero electrical resistance.
- But this only occurs at temperatures below a critical temperature, T_c.
- In most cases this temperature is far below room temperature.

Critical current

- If the current is too big, superconductivity is destroyed.
- Maximum current for zero resistance is called the ‘critical’ current.
- For larger currents, the voltage is no longer zero, and power is dissipated.

Critical magnetic field

- Magnetic field is screened out by screening current.
- Larger fields require larger screening currents.
- Screening currents cannot be larger than the critical current.
- This says there is a critical magnetic field which can be screened.

Chap. 15: Nucleus and radioactivity

- Structure of the nucleus
 - Nucleus has small size, large energy scale
 - Strong force holds nucleus together
 - Isotope: different neutron #, same proton #
 - Nuclear binding energy different for different nuclei
- Radioactive decay
 - ‘Unstable’ nuclei decay by emitting radiation
 - Alpha, beta, gamma decay
- Decay half-life and carbon-dating
 - Decay is a random process
 - Half-life characterizes decay rate

Topic: Structure of the nucleus

- Nucleus is small, tightly bound system of protons & neutrons.
- Proton number determines the element.
- Different isotopes have different # neutrons.
- Some isotopes unstable, radioactively decay
- Nucleus held together by the strong nuclear force
 - Stronger than coulomb force,
 - But much shorter range than coulomb force.
- Strong force actually between quarks, internal constituents of the neutron/proton.
 ‘Leaks’ out to appear as an attractive force.

Size & structure of nucleus

- Nucleus consists of protons and neutrons densely combined in a small space (~10^{-14} m)
 - Protons have a positive electrical charge
 - Neutrons have zero electrical charge (are neutral)
- Spacing between these nucleons is ~ 10^{-15} m
- Size of electron orbit is 5×10^{-11} m
- Nucleus is 5,000 times smaller than the atom!
Isotopes

- Both ^{12}C and ^{14}C have same chemical properties.
- This is why they are both called carbon. Same number of electrons and hence same number of protons in nucleus.
- But the nuclei are different. They have different number of neutrons. These are called isotopes.
- Difference is most easily seen in the binding energy.
- Nuclei that are bound more tightly are less likely to ‘fall apart’.
- In fact ^{14}C is radioactive. It is unstable to emission of an electron.

Nuclear Binding Energy

- Mass of nucleus is less than mass of isolated constituents.
- The difference is the binding energy.

Alpha and beta decay

- Alpha decay: chunk of nucleus ejected
- Beta decay: electron emitted, neutron changes to proton
- Beta* and gamma decay
- Nucleus emits positron. Proton changes to neutron
- Nucleus changes quantum state from high energy to low energy

Topic: Radioactive Decay

- Some nuclei spontaneously emit radiation: alpha, beta, gamma
- Radioactive half-life
- Decay type understood in terms of number of neutrons, protons.
- Understand in terms of weak interaction, Quark internal structure.

Beta and gamma decay

- Beta* and gamma decay
- Nucleus emits positron. Proton changes to neutron
- Nucleus changes quantum state from high energy to low energy

Topic: Radioactive half-life

- Example of random decay.
- Start with 8 identical radioactive nuclei
- Suppose probability of decaying in one second is 50%.

- Every second, half the atoms decay
- The half-life is one second

- Undecayed nuclei
- T=0 sec T=1 sec T=2 sec T=3 sec
Carbon Dating

- ^{14}C has a half-life of ~6,000 years, continually decaying back into ^{14}N.
- Steady-state achieved in atmosphere, with $^{14}\text{C}:^{12}\text{C}$ ratio of 1:1 trillion (1 part in 10^{12}).

As long as biological material alive, atmospheric carbon mix ingested (as CO$_2$), ratio stays fixed.

After death, no exchange with atmosphere. Ratio starts to change as ^{14}C decays.

Chapter 16: Fission & fusion

- The fission process
 - Some heavy nuclei split apart after absorbing a neutron.
 - Energy is released according to binding energy
- The fusion process
 - Light nuclei can fuse together under high temperature, pressure
 - Energy is released: binding energy differences
- Fission and fusion weapons
- Fission and fusion reactors

Differences between nuclei

- Schematic view of previous diagram
- ^{56}Fe is most stable
- Move toward lower energies by fission or fusion.
- Energy released related to difference in binding energy.

Topic: Nuclear fission

- In some cases, the effect of neutron bombardment is more dramatic.
- Leads to nuclear fission, where a heavy nucleus is split apart into two smaller ones.

Fission chain reaction

- Neutrons are released in this process, leading to more fission events
- Chain reaction can result

Uranium isotopes

- ^{235}U will fission.
- However after ^{235}U absorbs neutron to become ^{236}U, it beta decays (neutron changes to proton) to ^{236}Np, $t_{1/2}=23$ min
- This quickly beta decays to ^{236}Pu, $t_{1/2}=2.3$ days

1941: discovered that Pu will fission.

Fission limited to ^{235}U, ^{239}Pu
Controlled Fission Reactors

- The reactor in a nuclear power plant does the same thing that a boiler does in a fossil fuel plant – it produces heat.
- Basic parts of a reactor:
 - Core (contains fissile material)
 - Moderator (slows neutrons down to enhance capture)
 - Control rods (controllably absorb neutrons)
 - Coolant (carries heat away from core to produce power)
 - Shielding (shields environment from radiation)

Topic: Nuclear Fusion

- 'Opposite' process also occurs, where nuclei are fused to produce a heavier nucleus, but requires large initial energy input.
- Called nuclear fusion.

Terrestrial fusion reactions

- Deuterium = nucleus of (1 proton & 1 neutron)
- Tritium = nucleus of (1 proton & 2 neutrons)
- Two basic fusion reactions:
 - deuterium + deuterium → ³He + n
 - deuterium + tritium → ⁴He + n

Energy is released as result of fusion:

\[
D + T \rightarrow {}^{3}\text{He} (3.5 \text{ MeV}) + n (14.1 \text{ MeV})
\]