From Last Time...

- Electromagnetic waves
- Charges, current and forces: Coulomb’s law.
- Accelerating charges produce an electromagnetic wave
- The idea of the electric field.

Today...

Electric fields, magnetic fields, and their unification

Eventually transatlantic signals!

Gulgielmo Marconi’s transatlantic transmitter

Electromagnetic Waves

- A Transverse wave.
- Electric and magnetic fields are perpendicular to propagation direction
- Can travel in empty space

\[f = \frac{v}{\lambda}, \quad v = c = 3 \times 10^8 \text{ m/s} \ (186,000 \text{ miles/second!}) \]

The idea of electric fields

- EM wave made up of oscillating electric and magnetic fields.
- But what is an electric field?
- Electric field is a way to describe the force on a charged particle due to other charges around it.
- Force = charge \(\times \) electric field
- The direction of the force is the direction of the electric field.

Question

- Direction of force between two particles of the same charge (use next slide).

The electric field

\[F = k \frac{Q_1 Q_2}{r^2} \]

...due to this charge
Visualizing the electric field

- Faraday invented the idea of field lines following the force to visualize the electric field.

> Local electric field is same direction as field lines.
> Force is parallel or antiparallel to field lines.
> Charged particle will move along these field lines.
> Field lines emanate from positive charge and terminate on negative charge.

Why bother?

- Why invent fields - why not just use forces?
- Think of the EM wave. A spark is an accelerating current flow, producing the wave.
- The wave continues to propagate even when the spark is gone.
- No charges anywhere, but time-varying fields propagate as a wave.

Electric field: summary

- Presence of electric field means that there will be a force on a charged particle.
- This force (and electric field) can arise from electric charges (via Coulomb’s law).
- Is a way to determine forces on a charged particle without thinking about the charges that give rise to the forces.

But wait... there’s more

- Energy can be stored in the field.
- Energy density proportional to \((\text{Electric field})^2\) \((\text{Magnetic field})^2\)
- Electromagnetic forces aren’t felt instantaneously, the propagate at speed of electromagnetic wave (speed of light)
- Object transfers momentum to the field, which later transfers it to another object.

Magnetic forces

- Clearly magnets interact with each other
- Sometimes attracting, sometimes repelling
- But the magnetic particles are sort of a ‘composite’ positive and negative ‘magnetic charge’.
- Visualized as a bar with positive pole (North) at one end and negative pole (South) at other.
- These ‘magnetic charges’ cannot be broken apart — always appear in N-S pairs.

Magnetism: Permanent magnets

- North Pole and South Pole
- This is the elementary magnetic particle
- Called magnetic dipole (North pole and South pole)
- Poles interact with each other similar to charges.
Magnetic field

- Similar in spirit to electric field
- Used to determine the ‘orientational’ force on a magnetic dipole:
 - Magnetic field exerts a force on a dipole that aligns it with magnetic field lines.
 - Uniform magnetic field only rotates dipole: doesn’t cause it to move.
- Static magnetic field arises from permanent magnets (or currents).
- But, as electric field, can exist in an EM wave even without magnetic dipoles.

Field lines of a magnet

- Field lines indicate direction of field
- Density indicates strength of field
- Similar to electrostatic force, but force is felt by magnetic dipole

The Earth is a magnet!

Earth is a magnetic dipole.
North magnetic pole - at south geographic pole
A compass is a magnetic dipole
Compass needle aligns with local Earth field

Surprise! Electric current produces magnetic field

- Current (flow of electric charges) in wire produces magnetic field.
- That magnetic field aligns compass needle

Magnetic field from a current

Iron filings align with magnetic field lines
Magnetic field loops around the current.

Forces between currents

- Which of these pairs of currents will attract each other?

A. A
B. A & C
C. B
Magnetic field from a current loop

- One loop: field still loops around the wire.
- Many loops: same effect

Solenoid electromagnet

- Sequence of current loops can produce strong magnetic fields.
- This is an electromagnet

Superconducting Magnets

- Solenoid as in conventional electromagnet.
- But once current is injected, power supply turned off, current and magnetic field stays forever... ...as long as $T < T_c$

Magnetic Field Ranges

<table>
<thead>
<tr>
<th>Field Size</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>850 T</td>
<td>the strongest declassified plutonium 1.0 T</td>
</tr>
<tr>
<td>60 T</td>
<td>60 T long Tesla magnet</td>
</tr>
<tr>
<td>33 T</td>
<td>MIT continuous field magnet</td>
</tr>
<tr>
<td>2 T</td>
<td>MRI machine</td>
</tr>
<tr>
<td>0.5 T</td>
<td>Strong speaker magnet</td>
</tr>
</tbody>
</table>

Magnets for MRI

- Magnetic Resonance Imaging typically done at 1.5 T
- Superconducting magnet to provide static magnetic field
- Spatial resolution of positions of tracer atomic nuclei.

Large scale applications

- Superconducting magnet
- Plasma confinement torus
- Proposed ITER fusion test reactor
Time-varying magnetic field

- Up to this point, electric and magnetic fields constant in time
- Constant electric current produces constant magnetic field.
- Constant magnetic field produces nothing in particular!
- But changing the magnetic field in time produces an electric field!
- This effect is called induction.

Faraday’s law of induction

Faraday’s law:
- time-varying magnetic field produces electric field
- Strength of electric field proportional to how fast magnetic field changes.

In this experiment:
- Magnetic field is largest close to the bar magnet, drops off farther away.
- Moving magnet toward coil causes magnetic field through coil to increase with time, producing electric field
- Since coil is conducting, this electric field produces a current in the wire of the coil and through the meter.

One step further: Lenz’s law

- This induced current produces a magnetic field, which interacts with the bar magnet just as another bar magnet would.
- Lenz’s law describes the direction of the induced field (or equivalently, the direction of the induced currents)
 - The induced current circulates in such a way as to generate a magnetic field that tends to cancel the change in the field.
 - Causes repulsive force on original moving bar magnet.

Time-varying electric field

- Can also produce a time-varying magnetic field with a time-varying current in an electromagnet.
- Faraday’s law: time-varying magnetic field produces electric field, electric field produces electric current (in a metal).
- Just as before, the current is induced in such a way that the resulting magnetic dipole repels the changing flux that produced the current.
- This is the principle of an electromagnetic ‘gun’.

Maxwell’s unification

- Intimate connection between electricity and magnetism
- Time-varying magnetic field induces an electric field (Faraday’s Law)
- Time-varying electric field generates a magnetic field

\[
\nabla \times E = \frac{1}{c^2} \frac{\partial B}{\partial t} \\
\n\nabla \times B = \frac{1}{c^2} \frac{\partial E}{\partial t}
\]

In vacuum:

This is the basis of Maxwell’s unification of electricity and magnetism into Electromagnetism

Electromagnetic Waves

Current (up and down) creates electromagnetic wave consisting of oscillating electric and magnetic fields
Electromagnetic Waves

- A Transverse wave.
- Electric and magnetic fields are perpendicular to propagation direction.
- Can travel in empty space.

\[f = \frac{v}{\lambda}, \]
\[v = c = 3 \times 10^8 \text{ m/s} \ (186,000 \text{ miles/second})! \]