S-duality and new rank 1 SCFTs

by

John Wittig

In collaboration with

Philip Argyres and Paul Esposito
Argyres-Seiberg Duality (PCA & NS, 0711.0054)

\[g [d_i] \rightarrow \tilde{g} [\tilde{d}_i] \rightarrow (\tilde{r} \oplus \text{SCFT} [d, \mathfrak{h}]) \]

- LHS, we have a gauge group, \(g \), with half-hypermultiplets in representations \(r \).
- RHS, we have a rank 1 superconformal fixed point with the mass dimension of the Coulomb branch vev \(d \) and flavor symmetry group \(\mathfrak{h} \). We gauge a subgroup, \(\tilde{g} \), of \(\mathfrak{h} \) and add half-hypermultiplets charged in representations \(\tilde{r} \) of \(\tilde{g} \).

The way to think of \(N = 2 \) superconformal fixed points is that the dimension of the Coulomb branch vev is equivalent to the gauge group in lagrangian theories.
Criteria for Duality \textit{(PCA & JRW, 0712.2028)}

\[g[d_i] \text{ w/ } r \simeq \tilde{g}[\tilde{d}_i] \text{ w/ } (\tilde{r} \oplus \text{SCFT}[d, \tilde{h}]) \]

1. The rank of the gauge group and spectrum of the dimensions of Coulomb branch vevs.
 \[\{d_i\} = \{	ilde{d}_i\} \cup \{d\} \]

2. The flavor symmetry algebras.
 \[f = \tilde{f} \oplus H \]

3. The contribution to the beta function from weakly gauging the flavor symmetry.
 \[T(r) = T(\tilde{r}) + k_{\tilde{h}} \cdot |f \rightarrow h| \]

4. The number of marginal couplings.
 \[2 \cdot T(\tilde{g}) = T(\tilde{r}) + k_{\tilde{h}} \cdot |\tilde{g} \rightarrow \tilde{h}| \]

5. The contribution to the \(U(1)_R \) (and subsequently the \(c \) conformal anomaly) symmetry central charge.
 \[(3/2) \cdot k_R = 24 \cdot c = 4 \cdot (|g| - |\tilde{g}|) + (|r| - |\tilde{r}|) \]

6. The contribution to the \(a \) conformal anomaly.
 \[48 \cdot a = 10 \cdot (|g| - |\tilde{g}|) + (|r| - |\tilde{r}|) \]

7. The existence of a global \(\mathbb{Z}_2 \) obstruction to gauging the flavor symmetry.
\[4 \cdot (2 \cdot a - c) = \left| g \right| \]

- In lagrangian theories, the \(a \) and \(c \) anomalies can be computed by t’Hooft anomaly matching.
- When looking at \(N = 2 \) superconformal gauge theories we find an interesting relationship amongst \(a \) and \(c \).
- \(4 \cdot (2a - c) = |g| = \sum_i (2d_i - 1) \).
- Now looking at criteria (1), (5), and (6): \(4 \cdot (2a - c) = (2d - 1) \)
- Recent work by Shapere and Tachikawa (AS & YT, 0804.1957) provides a proof that this formula is true for a large class of theories.
\(\mathbb{Z}_2\) obstruction - an example

\(G_2 \cong SU(2) \oplus SCFT[6, Sp(5)]\)

- Since the 7 of \(G_2\) is a real representation the flavor symmetry group is \(Sp(4)\). If we try to gauge this \(Sp(4)\) we get a \(\mathbb{Z}_2\) obstruction since there are 7 half-hypermultiplets in the 8, which is pseudoreal, of \(Sp(4)\).

- The embedding on the RHS is \(SU(2) \oplus Sp(4) \subset Sp(5)\) with \(l_{SU(2) \hookrightarrow Sp(5)} = l_{Sp(4) \hookrightarrow Sp(5)} = 1\).

- The \(Sp(5)\) must have a \(\mathbb{Z}_2\) obstruction to cancel the anomaly coming from the half-hypermultiplet in the 2 of \(SU(2)\).

- Therefore, the \(Sp(4)\), on the RHS, has a \(\mathbb{Z}_2\) obstruction matching the LHS.

The details of this was first worked out by Witten, An \(SU(2)\) Anomaly, Phys.Lett.B117:324-328, 1982.
Examples of Duality

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sp(3)</td>
<td>14 ⊕ 11 ∙ 6</td>
<td>Sp(2)</td>
<td>[6 : E₆]</td>
</tr>
<tr>
<td>2</td>
<td>SU(6)</td>
<td>20 ⊕ 15 ⊕ 15 ∙ 5 ∙ 6 ∙ 5 ∙ 6</td>
<td>SU(5)</td>
<td>5 ⊕ 5 ⊕ 10 ⊕ 10</td>
</tr>
<tr>
<td>3</td>
<td>SO(12)</td>
<td>3 ∙ 32 ⊕ 32' ⊕ 4 ∙ 12</td>
<td>SO(11)</td>
<td>3 ∙ 32</td>
</tr>
<tr>
<td>4</td>
<td>G₂</td>
<td>8 ∙ 7</td>
<td>SU(2)</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>SO(7)</td>
<td>4 ∙ 8 ⊕ 6 ∙ 7</td>
<td>Sp(2)</td>
<td>5 ∙ 4</td>
</tr>
<tr>
<td>6</td>
<td>SU(6)</td>
<td>21 ∙ 21 ⊕ 20 ⊕ 6 ∙ 6</td>
<td>SU(5)</td>
<td>10 ⊕ 10</td>
</tr>
<tr>
<td>7</td>
<td>Sp(2)</td>
<td>12 ∙ 4</td>
<td>SU(2)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>SU(4)</td>
<td>2 ∙ 6 ⊕ 6 ∙ 4 ⊕ 6 ∙ 4</td>
<td>SU(3)</td>
<td>2 ∙ 3 ⊕ 2 ∙ 3</td>
</tr>
<tr>
<td>9</td>
<td>SO(7)</td>
<td>6 ∙ 8 ⊕ 4 ∙ 7</td>
<td>G₂</td>
<td>4 ∙ 7</td>
</tr>
<tr>
<td>10</td>
<td>SO(8)</td>
<td>6 ∙ 8 ⊕ 4 ∙ 8' ⊕ 2 ∙ 8''</td>
<td>SO(7)</td>
<td>6 ∙ 8</td>
</tr>
<tr>
<td>11</td>
<td>SO(8)</td>
<td>6 ∙ 8 ⊕ 6 ∙ 8'</td>
<td>G₂</td>
<td>[4 : E₇] ⊕ [4 : E₇]</td>
</tr>
<tr>
<td>12</td>
<td>Sp(2)</td>
<td>6 ∙ 5</td>
<td>SU(2)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Sp(2)</td>
<td>4 ∙ 4 ⊕ 4 ∙ 5</td>
<td>SU(2)</td>
<td>3 ∙ 2</td>
</tr>
<tr>
<td>14</td>
<td>SU(4)</td>
<td>10 ⊕ 10 ⊕ 2 ∙ 4 ⊕ 2 ∙ 4</td>
<td>SU(3)</td>
<td>3 ⊕ 3</td>
</tr>
<tr>
<td>15</td>
<td>SU(3)</td>
<td>6 ∙ 3 ⊕ 6 ∙ 3</td>
<td>SU(2)</td>
<td>2 ∙ 2</td>
</tr>
<tr>
<td>16</td>
<td>SU(4)</td>
<td>4 ∙ 6 ⊕ 4 ∙ 4 ⊕ 4 ∙ 4</td>
<td>Sp(2)</td>
<td>6 ∙ 4</td>
</tr>
<tr>
<td>17</td>
<td>SU(3)</td>
<td>3 ⊕ 3 ∙ 6 ⊕ 6</td>
<td>SU(2)</td>
<td>n ∙ 2</td>
</tr>
</tbody>
</table>
Results: New SCFT’s

<table>
<thead>
<tr>
<th>d</th>
<th>\mathfrak{h}</th>
<th>$k_{\mathfrak{h}}$</th>
<th>$24 \cdot c$</th>
<th>$48 \cdot a$</th>
<th>\mathbb{Z}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>E_8</td>
<td>12</td>
<td>124</td>
<td>190</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>$Sp(5)$</td>
<td>7</td>
<td>98</td>
<td>164</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>E_7</td>
<td>8</td>
<td>76</td>
<td>118</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>$Sp(3) \oplus SU(2)$</td>
<td>$5 \oplus 8$</td>
<td>58</td>
<td>100</td>
<td>yes\oplusno</td>
</tr>
<tr>
<td>3</td>
<td>E_6</td>
<td>6</td>
<td>52</td>
<td>82</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>\mathfrak{h}</td>
<td>$\frac{8-n}{I_{SU(2)} \rightarrow \mathfrak{h}}$</td>
<td>$38 - 2n$</td>
<td>$68 - 2n$</td>
<td>?</td>
</tr>
</tbody>
</table>

- The central charges of the E_6, E_7, and E_8 flavor symmetry groups were confirmed by an F-theory calculation by Aharony and Tachikawa, 0711.4532.
Seiberg-Witten Theory

- The physics is encoded by:
 - the Seiberg-Witten curve: $y^2 = x^3 + f(u,m_i) x + g(u,m_i)$
 - the Seiberg-Witten 1-form: λ_{SW}

- From $N = 2$ susy, $M^2 \geq |Z|^2$

- $U(1)$ charges of a physical state are defined by the homology class of cycle, γ.

- The central charge of the state associated to γ is $Z = \oint_\gamma \lambda_{SW}$.

- λ_{SW} satisfies $\partial_u \lambda_{SW} = \frac{dx}{y} + \partial_x (\ast) dx$.

- The singularities are at: $\Delta = 4 \cdot f^3 - 27 \cdot g^2 = 0$.
 - Physically, the singularities correspond to a breakdown of the low-energy description. This occurs when charged states become massless.
Central Charges and Curves

Recently, Shapere and Tachikawa have used a topological twisted version of these theories to relate properties of the Seiberg-Witten curve to numerical values of the anomalies and central charges. These results allow us to get a handle on:

- the number of neutral hypermultiplets
- the number of singularities of the Seiberg-Witten curve.

In the twisted theory the measure of the path integral involves functions holomorphic in the moduli.

1. The scaling behaviour of these functions encodes the R-anomaly of the states that are becoming massless at a singularity in moduli space.

2. \(\int [du] [dq] A^\chi B^\sigma C^n e^{-S_{\text{low-energy}}} \)

 (a) \([du]\) \& \([dq]\) represent vector multiplets and neutral hypermultiplets massless on moduli space.

 (b) \(\chi\) and \(\sigma\) are the Euler characteristic and the signature of the 4-manifold.

 (c) \(A^2 = \det \left[\frac{\partial u_i}{\partial a_j} \right] \)

 (d) \(B^8 = \text{Radical} [\Delta] \)
Results for 1D Coulomb branches

The normalization of R-charges is: \(R(\#) = 2 \cdot D(\#) \).

The central charges are then determined to be:

1. \(48 \cdot a = 12 \cdot R(A) + 8 \cdot R(B) + 10 \cdot r + 2 \cdot h \)
2. \(24 \cdot c = 8 \cdot R(B) + 4 \cdot r + 2 \cdot h \)

(a) \(r \) is the complex dimension of the Coulomb branch.
(b) \(h \) is the number of massless neutral hypermultiplets on moduli space.

In the case we are interested in (1 dimensional Coulomb branches) the R-charges are:

- \(R(A) = d - 1 \)
- \(R(B) = \frac{1}{4} \cdot Z \cdot d \)

- \(Z \) is the number of singularities of the S-W curve.

Notice:

- \(4 \cdot (2 \cdot a - c) = 2 \cdot R(A) + r = 2 \cdot (d - 1) + 1 = 2 \cdot d - 1 \)

Reproducing the relation between \(a \) and \(c \) is comforting. In the case \(r = 1 \) we find the following two relations:

1. \(24 \cdot c = 2 \cdot Z \cdot d + 4 + 2 \cdot h \)
2. \(k_\emptyset = 2 \cdot d - h \)
Two candidate Seiberg-Witten curves with the E_6 singularity and flavor symmetry $SU(3)$ have been constructed.

The neutral hypermultiplets account for the \mathbb{Z}_2 obstruction.
Future Directions

• Use the information about the number of singularities along with other techniques to compute:

 - Seiberg-Witten curves for the new mass deformations.
 - Seiberg-Witten 1-forms for the new mass deformations.

• Attempt a classification of all mass deformations of $N = 2$ superconformal theories with a 1D Coulomb branch.

• Attempt, using these new techniques, to extend (complete) our classification of $N = 2$ superconformal theories with a 2D Coulomb branch.