1) \(^{32}S \) \(A = 32 \) \(Z = 16 \)

\[B = a_1 \frac{A}{2^{1/3}} - a_2 \frac{Z^2}{2^{1/3}} - a_3 A^{1/3} - a_4 (A/2Z)^{2/3} A \]

\(A \)	32
\(Z \)	16
1 even-even, 0 even-odd, -1 odd-odd	1

Numerical coefficients
- Volume term: 15.67
- Surface area term: 17.23
- Coulomb term: 0.75
- Exclusion Principle term: 93.2
- Even/odd-Even/odd term: 12
- Total Binding energy: 501.44

Proton mass: 938.2723 MeV/amu
Neutron mass: 939.5656 MeV/amu

Nucleus mass neglecting binding: 269.417592

von Weizsacker prediction in MeV: 29775.9888

von Weizsacker prediction in amu: 931.49432

Sulfur actual mass: 31.972071
% difference: -0.0195211
Error in MeV: -0.1818377

2) \(^{8}Be \) \(Z=4, N=4 \)

\[2 \times ^{4}He \]

\(^{8}Be \) is unstable

\(M = 8.005704 \text{ MeV/amu} \)
3) 11-31) neutron rich \rightarrow prob β-decay to 6Li

$\Delta M(^{11}Be) - M(^6Li) = (6.018886 - 6.015121)u = 0.003765$

4) 11-43) ^{30}Si $\quad Z = 14, N = 16$ filled shell $\rightarrow J = 0$
^{27}Al $\quad Z = 17, N = 20$ n filled, $J_{\text{total}} = 7/2$ $\Rightarrow J = 3/2$
^{55}Co $\quad Z = 27, N = 28$ u filled $\quad J = 7/2$
^{90}Zr $\quad Z = 40, N = 50$ filled $\quad J = 5/2$
^{107}In $\quad Z = 49, N = 58$ $J^p = 9/2$ u filled $\quad J = 9/2$

5) 11-55) ^{11}B $\quad Z = 5, N = 6$

If I assume the 2 $1p_{3/2}$ protons have $J = 0$, then $J = 1/2$. But it is possible that they have $J = 1$ in which case you could also have $J = 3/2$.

[Diagram of nuclear states]
2nd excited state has $J = \frac{3}{2}$

could put the 1 proton in 1ds\frac{3}{2} state

but this looks energetically unfavorable

\[\begin{array}{c|c}
\text{10} & \text{1s}\frac{3}{2} \\
\hline
\text{1p} & \text{1p}\frac{3}{2} \\
\text{1d} & \text{1d}\frac{3}{2} \\
\text{1f} & \text{1f}\frac{3}{2} \\
\end{array} \]

1\text{st excited state}

Assume 2 1s\frac{3}{2} neutrons make $J = 0$ then $J = \frac{1}{2}$

2\text{nd excited state}
6) \[N(t) = N_0 e^{-\frac{t}{\tau}} \]
\[\tau = \frac{5730 \text{ yr}}{0.693} = 8268 \text{ yr} \]
\[\frac{dN}{dt} = -\frac{N}{\tau} \]

Luminosity \[N_{\text{hf}} = \left(19 \times \frac{\text{laund}}{129} \right) \times 6.0 \times 10^{22} \frac{\text{sec}^{-1}}{\text{molecule}} \times 1.3 \times 10^{-12} \]

(\text{It is mostly } 12 \text{C})

\[\text{Expected decay} / \text{min} = \frac{6.5 \times 10^{10}}{8268 \text{ yr} \times \pi \times 10^7 \text{sec} \times 1 \text{mm} \times 10^2 \text{sec}} = \frac{15}{\text{min}} \]

16000yr old skeleton

\[15 / \text{min} \times e^{-\frac{10000}{8268}} = 6.6 / \text{minute} \]