

Energy Bands of Electrons and Phonons

Ground State of a Solid

<table>
<thead>
<tr>
<th>property</th>
<th>measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>charge density</td>
<td>(\rho)</td>
</tr>
<tr>
<td>spin density</td>
<td>(\rho^\uparrow - \rho^\downarrow)</td>
</tr>
<tr>
<td>total energy</td>
<td>(U)</td>
</tr>
<tr>
<td>magnetic moment</td>
<td>(-\partial U/\partial B)</td>
</tr>
<tr>
<td>bulk modulus</td>
<td>(\partial^2 U/\partial V^2)</td>
</tr>
</tbody>
</table>

Excited State of a Solid

<table>
<thead>
<tr>
<th>quasiparticle</th>
<th>wave, oscillating quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron, hole</td>
<td>wave function (\psi_e, \psi_h)</td>
</tr>
<tr>
<td>photon</td>
<td>electromagnetic field (A)</td>
</tr>
<tr>
<td>phonon</td>
<td>atomic displacement (\delta r)</td>
</tr>
<tr>
<td>plasmon</td>
<td>charge density (\rho)</td>
</tr>
<tr>
<td>magnon</td>
<td>magnetization (M)</td>
</tr>
<tr>
<td>polariton = photon / phonon</td>
<td>polarization (P)</td>
</tr>
<tr>
<td>polaron = electron + phonon</td>
<td>(\psi_e + \delta r)</td>
</tr>
<tr>
<td>exciton = electron + hole</td>
<td>(\psi_e + \psi_h)</td>
</tr>
</tbody>
</table>

Fundamental excitations in a solid are fully characterized by **quantum numbers**, such as **energy** \(E \), **momentum** \(p \), spin \(\sigma \), and angular symmetries (= point group symmetry). These are usually displayed as the **band dispersion** \(E(k) \) which contains labels for spin and symmetry.

Particle-wave duality in quantum mechanics says that each **wave** \(\psi = A \cdot \exp[i(kr - \omega t)] \) corresponds to a **quasiparticle** with energy \(E = \hbar \omega \) and momentum \(p = \hbar k \).

In a periodic crystal a plane wave becomes a **Bloch function** \(\psi_{\text{Bloch}} = u_k(r) \exp[i(kr - \omega t)] \) where \(u_k(r) \) is a **periodic** function. It can be expanded into a Fourier series that is summed over reciprocal lattice vectors \(G \): \(u_k(r) = \Sigma_G u_G \exp[i(Gr)] \)
Energy Bands $E(k)$

Electrons in Silicon:

![Electron Band Structure Diagram]

Phonons in Silicon:

![Phonon Frequency Diagram]
Density of States \(D(E) \)

\(D(E) = \) number of states (\(= \) modes) per energy interval. The density of states in \(k \)-space is constant, with a spacing \(\delta k = 2\pi/L \) between states. Electrons have two spin states (\(\uparrow, \downarrow \)).

General Case (3D): \(D(E) \sim \int \frac{1}{|v_{\text{group}}(k)|} \, dS \)

Integrate over the surface \(S \) in \(k \)-space where \(E(k) = \) constant = \(E \).

\(v_{\text{group}} = 0 \) leads to van Hove singularities in \(D(E) \).

Spherical Symmetry (3D): \(D(E) = \frac{dn}{dE} = \frac{(dn/dp)/(dp/dE)}{p(E)/v_{\text{group}}(E)} \approx \frac{p^2(E)}{v_{\text{group}}(E)} \)

\(S = \) sphere with area \(4\pi p^2 \). Convert the variable \(p \) to \(E \) by inverting \(E(p) \) to \(p(E) \).

Examples:

Acoustic phonons:

\(E = v_{\text{sound}} \cdot p \rightarrow p^2(E) = (v_{\text{sound}})^2 \cdot E^2 \), \(v_{\text{group}} = v_{\text{sound}} \), \(D(E) \sim (v_{\text{sound}})^{-3} \cdot E^2 \)

Free electrons in various dimensions:

\[
\begin{align*}
\text{3D:} & & \quad \sqrt{E} \\
\text{2D:} & & \quad 1 \\
\text{1D:} & & \quad 1/\sqrt{E}
\end{align*}
\]

Density of states for phonons in silicon (top), obtained from the band dispersion (bottom).

Bands with low \(v_{\text{group}} \) produce high density of states.

The Debye approximation emphasizes acoustic phonons, the Einstein approximation optical phonons.
Phonon Modes

Phonon frequency: $\omega \approx \sqrt{\kappa/m}$ κ = force constant, m = mass (harmonic oscillator).

Measure $E(k)$ from the E,k transfer in inelastic neutron scattering.

Phonon modes:
1. Transverse: $\delta r \perp k$
 Longitudinal: $\delta r \parallel k$
2. Acoustic: In Phase
 Optical: Out of Phase

N atoms per unit cell \rightarrow 3N phonon bands \quad (Each atom can move in x, y, z.)