1. T&L 5-7

2. 5-22

3. An atom at rest emits a photon. What is the wavelength of the atom?

4. a) Use the DeBroglie hypotheses for energy and momentum to determine the relationship between frequency and wavelength for a relativistic particle of rest mass \(m \). b) Show that your answer leads to the proper relations between frequency and wavelength for light, and for nonrelativistic particles.

5. Estimate the minimum kinetic energy for a proton (mass 938 MeV/c\(^2\)), confined to a nucleus of size \(5 \times 10^{-15} \) m. b) Repeat the calculation for an electron. c) Based on your calculations for part b), do you expect electrons to be a basic constituent of nuclei? Explain.

6. A beam of Rb atoms with velocity \(v \) and mass \(m \) is normally incident on a slit of width \(d \). The atoms are detected on a screen a distance \(D \) from the slit. Estimate, using the uncertainty principle, the value of \(d \) such that the width of the beam on the screen is a minimum.