NAME:	, Sect. #

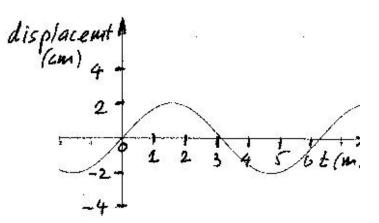
Physics 109 **Homework # 1** due Monday, September 18, 2001

- Prefixes for large numbers are **k** for kilo (1000), **M** for mega (10⁶) and **G** for giga (10⁹).
- Prefixes for small numbers are m for milli (10⁻³), μ for micro (10⁻⁶), and n for nano (10⁻⁹).
- Weight of a mass depends on how strong gravity is at that location. On earth, the acceleration of gravity is $g = 9.8 \text{ m/s}^2$. The weight is figured as w = mg.
- spring constant \underline{k} is related to force \underline{F} and elongation (stretching) \underline{x} by $\underline{F} = \underline{k}\underline{x}$.
- 1. A dog can hear frequencies up to 40,000 Hz
 - a) express this frequency in kHz.
 - b) find the period of this oscillation. Express the answer in s, in ms and in μ s.
- 2. If Jim has a mass of 70 kg, how much many Newtons does he weigh on earth where the acceleration of gravity is g= 9.8 m/s²?

if Jim is on the moon where the acceleration of gravity is only $0.15~\text{m/s}^2$, how much will he weigh?

3. for the oscillation on the right, the horizontal axis (time) is in <u>msec</u>.

find the period T in sec and in msec:


T =

find the frequency $\underline{\text{in Hz}}$ and $\underline{\text{in kHz}}$:

f =

find the amplitude

A =

4. The length of a spring is measured for different pulls F:

pull F: 2N 4N 6N 8N 10N length of spring: 20cm 25cm 30cm 35cm 40 cm

Find the spring constant in N/cm and in N/m

5. For simple harmonic motion (mass on a spring) the frequency is the same, no matter whether the amplitude is large or small.