NAME:	Sect.	#
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 0000	**

Physics 109 Homework # 2 due Monday, September 24, 2001

- Damping time: a guitar string has a frequency of 260 Hz (middle-C) and a damping time of 2 sec.
 - a) How many oscillations does the string make before the amplitude has decreased to half of the original value?

f= 260 Hz = 260 osc/sec; in 2 sec: 2x260 = 520 oscillations

b) if the initial amplitude of the guitar string was 2 mm, how large will be the amplitude

after 2 sec? $\frac{1mm}{2}$ after 4 sec? $\frac{1mm}{2}$ after 8 sec? $\frac{1}{8}$ $\frac{mm}{2}$ = 4 $\frac{7}{4}$ + 2mm

2. In the lecture demo we found that a 2 kg mass oscillating up and down on a spring made 10 oscillations in 5 sec, which corresponds to a frequency of ______ Hz. (f = 1/1 0.53)

What would have been the frequency if the 2 kg mass was replaced by a 4 kg mass?

(hint: look at the SHO frequency formula and use proportions like we did in lecture).

 $f = \frac{1}{2\pi} \sqrt{k/m}$ Ranger mass $\rightarrow lowerf$ $f = \frac{2H^2}{\sqrt{2}} = \frac{1.4H^2}{2}$ $2 \times larger mass <math>\rightarrow \sqrt{2} \times lowerf(m \text{ is under } \sqrt{1})$

What would have been the frequency if the 2 kg mass was replaced by a 1 kg mass?

lower $M \rightarrow hijher f$ $2 \times lower M \rightarrow \sqrt{2} \times hijher f$ $f = 2 \times \sqrt{2} = \frac{2.8 \text{ Hz}}{4}$

3, The graph shows the pressure variations from two separate tuning forks.

Show the <u>superposition</u> of the two oscillations, i.e. the pressure variation when <u>both</u> tuning forks oscillate at the same time.

43. Beats: A tuning fork has a frequency of 440 Hz.	What are the possible frequencies of a
second tuning fork if, when both forks are sound	ed together, they produce 4 beats every
Second	
beat frequency 4Hz=	rea. difference between
11.2 12 12 12	<i>'</i>
the tan forks.	
Thus either 444Hz	or 436 Hz
5. A simple harmonic oscillator has a natural freque	
the oscillator is 40 ms.	ancy of 200 Hz. The damping time of
A periodic force is applied to the oscillator.	
For what frequency of this force does one obs	erve the largest amplitude of
oscillation?	
at 200 Hz	
about how many Hz would the frequency have	to be raised or lowered to get half as
much amplitude of the oscillator?	O III - load
much amplitude of the oscillator? $\triangle f : C = \frac{4}{9} \Rightarrow \triangle f = \frac{4/9}{40 \times 10}$	$= \frac{0.44 \times 1009}{100} = 11 \text{ Hz}$
7 40×10	7 49
raise or lower by 1/2×11H2	= 5.5 Hz (since of is full
 When one plots a resonance curve, the horizon 	
	· · · · · · · · · · · · · · · · · · ·
The horizontal axis shows freq. of driv	in (pushing) 1026
/ 	 0 /
The vertical axis shows what quantity?	
The vertical axis shows (7.14 ml h da st	in scillation and
The vertical axis shows amplitude of	Ducany System
	U
_	
 Based on the above make an approximate draw 	wing of the resonance curve.
amusi hide.	

