	NAME:			, Sect. #		
<u>Pł</u>	nysics 109	Homew	ork #5	due Mon	day Oct. 1	<u>5, 2001</u>
F	ormulae: in air v=	340m/s. Open	: $f_1 = v/2L; f_n$	= nf ₁ ; Clos	sed: f ₁ = v/4	L
Ex 1.	(a) Find the fundation of an open pipe of	mental frequer f 60 cm length.	ncy and the free	quencies of t	he first two	overtones
		_	Hz, _		Hz,	Hz.
(b) if the same pipe is closed at one end, what are the corresponding frequencies?						
			Hz, _		Hz,	Hz.
 (a) Make a graph of the pressure at different instances in an open pipe (left) and in a closed pipe (right) oscillating in the fundamental mode. (hint: first mark the pressure nodes by letter N - then draw the curves) closed end 						
) open pi	ne	>	closed	1 nine	
press r r (re	make a correspond	ling graph or th	e air velocity c	listribution in	the pipe.	e at all?)
air velocity					5 11 1101 11101	2 at an :)
	•					

(b) make corresponding **pressure** graphs for the **next higher mode**.

3. Between room temperature (20° C) and body temperature (37° C) the speed of sound increases by 10 m/s. A flute has a frequency of 260 Hz when it is cold. Find the frequency when the flute is warmed to body temperature by the flutist's breath (hint: use proportions to relate frequencies to speed of sound - what is the ratio of speed of sound at the two temperatures? What is the frequency ratio?)

Exercises on Fourier Analysis

NOTE: we can usually <u>not</u> figure out the amplitudes of the overtones, but can only find out which are present and what their frequencies are. Thus when you are asked to draw a Fourier spectrum the position of the Fourier components should be in the right place, but the intensity is arbitrary.

4 a) What might the Fourier spectrum of a closed pipe with fundamental frequency 300 Hz look like?

(b) What is the spectrum when the <u>same</u> pipe is open at both ends?

