AC Circuits

1) INTRODUCTION

In Chapter 22 we learned some things about how to analyze simple DC Circuits. A DC -
or direct current - circuit is a one in which the currents and voltages are constant — i.e. time
independent. There are many applications for DC circuits, but it is much more common to

encounter circuits in which the currents and voltages are time dependent.

In the present section we will learn about AC — or alternating current — circuits. In particular
we will focus on situations in which the currents and voltages all vary sinusoidally, with the
signals alternating between positive and negative:
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The voltage you get from the wall plugs in your house or apartment is sinusoidal, but there

P

are alsc many additional applications in which the signals are sine waves.

2) SINUSOIDAL FUNCTIONS

Lets define some of the terminology we will be using. In the drawing above the voltage signal
varies between +Vp and —V;. We call Vj the amplitude of the signal. The period, T, is the time
it takes for one complete cycle, and the frequency, f, is the number of complete cycles per unit

time. As you probably know,
1
I=7
The line voltage in your house or apartment has a frequency of 60 Hz (60 cycles/second), and the

corresponding period is T' = 16.7 ms.

Here is a simple formula for the voltage V (t) shown above:
V(t) = Vj sinwt,
where w is the “angular frequency” of the signal

w=2rf
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It’s important to understand that the functions Vg sinwt and
Vp coswt, are identical except that sinwt is shifted in phase by %
cycle (or 90°) relative to coswt. One of the things we will learn
is that in circuits with inductors and ca,pa,citors}aﬂ voltages and
currents are shifted in phase relative to each other. We will get

to that later.

As a first simple example problem lets suppose we apply a
sinusoidal voltage to a resistor. If we agree to use the symbol
[ to represent a sinusoidal voltage source (like a
@ V() battery that makes sine waves), then our circuit
| would look like this:

We can find the current in the resistor with Ohm’s Law, V = I K.

This equation applies at each instant in time, so if the voltage is
V(t) = Vp sinwt,

the current will be

I(t) = Iy sinwt,

where

Iy = Vy/R.
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The power dissipated in the resistor is given by P =1 2R. and so we can write

P(t) = I3R sin® wt.

Notice that the power is time dependent, varying from zero (when sinwt is zero) to IgR (when

sinwt = +1or — 1). We call this the instantaneous power.
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Often we only care about the average power. Since it’s the current that depends on time, the



average power [Playe is given by

[P]ave = [Iz]aveR-

In general, [I 2] ave would be called the “mean square” current, and the square root of that quantity

would be the “root mean square” (rms) current:

Irms = v [Iz]ave .

In terms of the rms current we can write

[Plave = I2R.
| |

This is a convenient way to write the power equation because it has the same form as the power

law for DC circuits.

It is fairly easy to show that for any sinusoidal current, the average value of I? is exactly half

the peak value:

1
[Iz]ave = 5 13,
and so we have

1

Iims = E
We can also define the rms voltage and once again, for any sinusoidal voltage, it will turn out

that

Iy.

1
V2

Once again, the usefullness of these definitions is that if we choose to work only with the rms

Vrms = VO

quantities and the average power, the relevant equations are V = IR and P = I R = V?/R,

exactly as we had earlier for DC circuits.

As you know, the line voltage in our houses is about 115 volts. This number is not Vj but
actually Vigs. If your toaster has a resistance of 502, the rms current will be 115V /50Q2 = 2.3A
and the corresponding power will be P = I?R = (2.3A)% 509 = 265 watts.
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3) AC CIRCUITS WITH INDUCTORS

Suppose that we have a circuit that includes an inductor, )

and that the voltage drop across the inductor sinusoidal: ¢.e. —_
V(t) = Vhcoswt. L V(+) _T

This voltage will give rise to a current, and from the text we know that the voltage and current

are related by

Vi(t) = L%I(t).

It’s easy to see that this equation will be satisfied for a current

W
I(t) = ﬁ sin wt.

According to this result, the current will be sinusoidal with an amplitude Iy = Vp/wL. If we make

the definition

X =wl )

then the equation relating Iy and Vj has the form of Ohm’s Law
Vo = 1o Xy,

where X is like the “effective resistance” of the inductor. This quantity, which has units of

: i bH) . h
Ohms, is called the “reactance” of the inductor. VU’) /‘

For a regular resistor the current is exactly in phase with the \ /\ /\

applied voltage, but for the inductor we see that the current is \ﬂ \/
shifted in phase relative to the voltage. As shown in the picture, :
|
the current, trails the voltage by by 90°. The result is completely —a,:%o &
L . Tt) *
sensible, since as we know, the current must increase whenever |
!
the applied voltage is positive. /\ -~
‘ \ : E
One of the important points here is that the reactance of \/ \/

the inductor depends on the frequency of the AC signal. As the
frequency is increased, the reactance increases, which means that

the current in the inductor will be smaller.
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4) AC CIRCUITS WITH CAPACITORS

Next lets consider circuits that include capacitors. As in the I(‘f) E(Q

previous section lets suppose that the voltage across the capaci-

' l
tor is given by the formula L L
W)

V(t) = Vacoswt.

We can find the corresponding current by remembering that the voltage is related to the amount

of charge on the capacitor

Q(t) = CV(¢),
and by noticing that positive current flow results in increasing ¢,
AQ=I{t)At or I= %

By taking derivatives of our starting equations we obtain

I(t) = %Q(t) = C’%V(t) = —wCVp sin wt.

From the last step we see that the current is sinusoidal, and that the peak current and peak

voltage are related by

Vo = I X¢

=

As in the inductor example, the quantity X, which we call the reactance of the capacitor, plays

where

the role of the effective resistance.

For inductors we found that the current trails the voltage V(‘f) /

by 90°, while in the present case the conclusion (from the equa- ‘\ /\ /‘

tions shown above) is that the current leads the voltage by 90°. \/ \/
|
Once again the result is sensible, since we know that the charge

(and therefore the voltage across the capacitor) must increase

A 4

—iop k-
whenever the current is positive. - m~ ([
1) o
Finally we note that, once again, the reactance depends on | s
N\
the frequency of the applied voltage. In this case, increasing the \/

the frequency leads to a smaller reactance and therefore a greater

current.
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5) AN OSCILLATING LC CIRCUIT

The circuit shown at the right is an example of a simple cir- r’ L yd
cuit in which the currents and voltages are naturally sinusoidal. r—)
Suppose that the capacitor is initially charged to a voltage Vy \/‘L—é :;_-' V,
and that at some time the switch is closed. PR

To analyze the circuit lets decide that clockwise currents will

be considered to be positive. Following our usual procedure, Vp,

and Vg stand for the voltage drops across the inductor and the capacitor in the direction of

positive current as indicated in the drawing. From Kirchhoff’s voltage rule we have

VL(t) + Ve(t) =0,

and, in addition, we know that V; = L2 and that Vi = &%, so we have
dat C

dar 1
L= +2=Q=0.
ate?=0

We now take the derivative of this equation and replace % by I to obtain

d? 1
LomI(t)+ 5I(t) =0
or
d? 1

We should all be able to recognize that this equation is satisfied provided that the current is

sinusoidal (sinwgt or coswpt) and that the angular frequency is

1
3

The full solution to our problem, assuming the switch is closed at ¢ = 0, would be

Vi
Vo(t) = —Vi(t) = Vpcoswot  and  I(t) = —W—OC sin wot.

The LC circuit is analogous in many respects to the oscillations of a mass on a spring. That

system also has a natural frequency, w = /k/m, and as the mass oscillates there is exchange of
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energy, from kinetic to potential, back to kinetic and so on. If the mass/spring system has no

friction to dissipate energy, the oscillations will continue forever. In the LC circuit the energy is

initially stored in the capacitor, and is then transferred to the inductor, back to the capacitor

and so on, and the oscillations continue indefinitely as long as there is no resistance to dissipate

the energy.

6) SERIES LRC CIRCUITS

As a next example lets consider the series “LRC” cir-
cuit shown at the right. Notice that since the elements are
connected in series, each of the three elements will have
the same current I(t). The voltage we have applied is si-
nusoidal, and so we know that the current will also be si-
nusoidal. Finally we know (from Kirchhoft’s voltage rule)
that the applied voltage from the AC source must equal
the sum of the voltage drops across the individual circuit

clements

Vs(t) = VR(t) + Vel(t) + VL(¢).

The main complication of using this equation is that while
the Vg, Vo and V, are all sinewaves, the three voltages are

not in phase with each other.

Using our results from the sections 3) and 4) above we
can learn something about the amplitude of each voltage.

If I is the amplitude of the current, then

Vro = R Veo = o Xc Vio = IpXg

We also know what the phase relations should be. Vi(t)
should be in phase with I(t), Vo (¢) should trail I(t) by 90°
and Vp(t) should lead I(t) by 90°. Notice that at any given
instant, Vo (t) and Vi (t) actually cancell rather than add.

OV, T ¢

So the problem we have is to add three voltages that are not in phase. We could try to do

this with trig formulas, but it’s much easier to make a simple geometrical picture. The idea is to

make use of the fact that the functions sin # and cos # have simple meanings for right triangles. In
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the picture below, Agcos# is just the horizontal component of a line of length Ayg. We call the

arrow in the drawing a “phasor”. To represent the function Agycoswt we need to imagine that

the phasor rotates counterclockwise (the direction of increasing 8} at angular velocity w starting

from # = 0 at time ¢t = 0. The horizontal component of the phasor then traces out the cosine

function. The function A4psinwt can be represented in the same way except that in this case we

start at £ = 0 with the phasor pointing downward. N\
Ao Ao

6 3

Now lets make a phasor diagram to represent the cur-
rent and voltages in our LRC circuit. We will have 4 pha-
sors in all, one for the current, one each for Vg, Ve and V.
Start by choosing some arbitrary direction for the current
{(any direction is OK, since different directions just corre-
spond to different times). Once th8 direction of I is chosen
we know how to find the correct directions for the remain-

ing phasors. We just need to remember that Vg is in phase

La,cne Ca, cosut

/

Aasin wt

Y
|
|
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|
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with I, Vg leads I by 90° and Vi trails I by 90°.

. Ve VL’- Vc

The usefulness of the drawing is that is shows us how to
add the three voltages. We just combine the three phasors
adding them in the same way that we would add vectors.
Recalling that Vg 4 Vo + V, is supposed to be Vg we easily
find (from the picture) that

(M

Vso = [VEo+ (Vo — Veo)?]

Using the formulas for Vg ete. from the previous page we can write our result in the form of

Ohm’s Law

where

Vso = InZ,

E

= [R® + (X1, - Xg)?]*.

o=

The quantity Z, which is called the “impedance” of the circuit, can be thought of as the effective

resistance of the LRC combination.



—9-

Our phasor diagram also provides information about the phase of the current relative to the
applied voltage. From the construction above we see that the applied voltage leads the current
by an angle ¢ given by

_ X1 -X¢
tan¢ = —5
7) RESONANCE BEHAVIOR

One of the interesting features of LRC circuits is that the response of the circuit can change
dramatically if the frequency of the applied voltage is “tuned” to the “resonant frequency” of the

circuit. To understand the resonant behavior we write the impedance of the circuit in the form

R* + (wL - L)2 i
wC )

The resonant frequency is the frequency at which X and X, are equal: i.e when

Z =

W=wg =

3

You may recall that this is just the natural frequency of the LC circuit we discussed earlier.

Right at the resonant frequency, the impedance of the circuit reduces to R and so if R is small
we can get relatively large currents, even if the inductor and the capacitor individually have very
large impedances. But as soon as we go away from the resonant frequency (say by a few percent)
the cancellation between Vi and Vg is no longer complete, and the amplitude of the resulting

current is greatly reduced.

Many physical systems will show resonance behavior basically like that of an LRC circuit.
If the system has a natural oscillation frequency and there is no mechanism to dissipate energy,
large amplitude oscillations occur when the system is driven at the natural frequency. Resonances
are seen in mechanical systems, electrical systems and also in atoms and nuclei. For example MRI
scans (Magnetic Resonance Imaging) make use of a technique for detecting nuclei of hydrogen
atoms in our bodies by stimulating the nuclei at a frequency equal to the precession frequency of
the nuclear magnetic dipole moments in the magnetic field of the scanner. The inventers of this

technique just won the Nobel Prize.




