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AC Circuits

1) TNTRODUCTTON

In Chapter 22 we learned some thin8s about how to ^nalyze simple DC Circuits. A DC

or direct curreut - circuit is a one in which the currents atrd voltages are con^stant i.e. time

independent. There are many applications for DC circuits, but it is much more common to

encounter circuits in which the currents and voltages are time dependent.

In the present eection we will learn about AC - or alternating current circuits. In particular

we will focus on situations in which the currents and voltages all vary sinusoidally, with the

signals alternating between pooitive and negative:
'/&)

1.Vo

The voltage you get from the wall plugs in your house or apartment is simrsoidal, but there

are also many additional applications in which the signals are sine waves'

2) SINUSOIDAL FUNCTIONS

Lets define some of the terminology we will be using. In the drawing above the voltage signal

varies between *Vs and -V6. We call V6 the amplitude of the signel. The period, ?, is the time

it takes for one complete cycle, and the frequency, J, is the number of complete cycles per unit

time. Ae you probably know,
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The line voltage in your house or apartment ha.s s frequsasy of 60Hz (60 cycles/second), and the

corresponding period is ? - 16.7rns.

Here is a simple formula for the voltage V(t) shown above:

V(t) : Yo "io'1,

where a.r is the "angula,r frequency" of the signal
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It's important to understand that the functions V6 sin c..rt and

Vs cos Lrl, are identical except that sin crt is shifted in phase by I

cycle (or 90') relative to cosL,t. One ofthe things we wili learn

is that in circuits with inductors and caPacitorgrFJ voltages and

cunents are shifted in phase relative to each other. We will get

to that later.

As a first simple example problem Iets suppose we apply a

sinusoidal voltage to a resistor. If we agree to use the symbol

5M r.,oL

to represent a sinusoidal voltage source (like a

battery that makes sine waves). then our circuit

| .ouid look like this:

We can find the current in the resistor with Ohm's Law, V : I R.

This equation applies at each instant in time, so if the voltage is

V(t1 : Yo tinrr,

the current will be

1(t) :  7o r1n11,

where

Io : Vo/R'

The power dissipated in the resistor is given by P : 12 R. and so we can write

P(t) : fis "ioz rr.

Notice that the power is tirne dependent, varying from zero (when sin c,-rt is zero) to IfrR (when

sino;l : *1or - 1). We call this the instantaneous power.

(+l
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Often we only care about the average power. Since it's the current that depends on time, the
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average power [P]u.," is given by

[P].* : lI2)u,.R.

In general. [12]u.," would be calied the "mean square" current, and the square root of that quantity

would be the "root mean square" (rms) current:

T -rrms -

In terms of the rms curent we can write

tF'l^-

tp l  -  12  17
| l  j  a v e  

-  r r m q r L .

This is a convenient way to write the power equation because it has the same form as the power

law for DC circuits.

It is fairly easy to show that for any sinusoidal cunent, the average value of 12 is exactly half

the peak value:

t r .
t r  Iave 

-

and so we have

_  I -r ,^" :  
r t ro.

We can also define the rms voltage and once again, for any sinusoidal voltage, it will turn out

that

%,"": lvo.
v2

Once again, the usefullness of these definitions is that if we choose to work only with the rms

quantities and the average power, the relevant equations arcV : f/? and P : I2R: V2 lR,

exactly as we had earlier for DC circuits.

As you know, the line voltage in our houses is about 115 volts. This number is not Vs but

actually Vr*". If your toaster has a resistance of 50 Q, the rms current will be 115V/504 : 2.3A

and the corresponding power will be P : 12R: (2.3A)2 50O : 265 watts.
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3) AC CIRCUITS WITH INDUCTORS

Suppose that we have a circuit that includes an inductor,

and that the voltage drop across the inductor sinusoidal: i.e.

V(t) :  Vo cosat.

-TI.{100'j-
LVT'J

and from the text we know that the voltage and current

d
v ( t ) :  L : r ( t ) .

o.r

u"
I(t\ : -] sinut.

According to this result, the current will be sinusoidal with an amplitude Io : Volal. If we make

the definition

This voltage will give rise to a current,

are related by

It's easy to see that this equation will be satisfied for a current

X t :  u L

then the equation relating 16 and V6 has the form of Ohm's Law

Vo: IoXr,,

where X1, is like the "effective resistance" of the inductor. This

Ohms, is called the "reactance" of the inductor.

For a regular resistor the current is exactly in phase with the

applied voltage, but for the inductor we see that the current is

shifted in phase relative to the voltage. As shown in the picture.

the current trails the voltage by by 90". The result is completely

sensible, since as we know, the current must increase whenever

the applied voltage is positive.

One of the important points here is that the reactance of

the inductor depends on the frequency of the AC signal. As the

frequency is increased, the reactance increases, which means that

the current in the inductor will be smaller.

ouantitv. which has units of

VL+)

IU)
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4) AC CIRCUITS WITH CAPACITORS

Next lets consider circuits that include capacitors. As in the

previous section lets suppose that the voltage across the capaci-

tor is given by the formula

V (t) : Vo cos ut.

We can find the corresponding current by remembering that the voltage is related to the amount

of charge on the capacitor

Q(t ) :  cv ( t ) ,

and by noticing that positive current flow results in increasing Q,
)f l

dt

By taking derivatives of our starting equations we obtain

f t l :  ! .qal :  c4val :  -ucvosinut .
dt dt

From the last step we see that the current is sinusoidal, and that the peak current and peak

voltage are related by

Vo: IoXc

where

As in the inductor example, the quantity X6, which we call the reactance of the capacitor, plays

the role of the effective resistance.

For inductors we found that the current trails the voltage

by 90', while in the present case the conclusion (from the equa-

tions shown above) is that the current leads the voltage by 90".

Once again the result is sensible, since we know that the charge

(and therefore the voltage across the capacitor) must increase

whenever the current is positive.

Finally we note that, once again, the reactance depends on

the frequency of the applied voltage. In this case, increasing the

the frequency leads to a smaller reactance and therefore a greater

current.

LQ : I( t)Lt or
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5) AN OSCILLATING LC CIRCUIT

The circuit shown at the right is an example of a simple cir-

cuit in which the currents and voltages are naturally sinusoidal.

Suppose that the capacitor is initially charged to a voltage V9

and that at some time the switch is closed.

To analyze the circuit lets decide that clockwise currents will

be considered to be positive. Following our usual procedure, V1,

and Vg stand for the voltage drops across the inductor and the capacitor in the direction of

positive current as indicated in the drawing. From Kirchhoff's voltage rule we have

vL( t )+vc ( t ) :0 ,

and,' in addition, we know that V7: L# and that V6: $, so we have

d t  1
t * -  

" Q : 0 .

We now take the derivative of this equation and replace o8 At t to obtain

A2 l
t h ' a t + ; I @ : o

or
) 2 r
L r r t t _  _ '  r ( t ) .
f l12'  

t "  t  -  
LC' 

'

We should all be able to recognize that this equation is satisfied provided that the current is

sinusoidal (sinc,.r6t or cos rl6f) and that the angular frequency is

I
' 

\/LC

The full solution to our problem, assuming the switch is closed at t:0, would be

Vc$) : -VLQ) : Vs cosugt and I(t) : -J\stn,;;ot.

The LC circuit is analogous in many respects to the oscillations of a mass on a spring. That

system also has a natural frequency, , : Jffi, and as the mass oscillates there is exchange of
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energy, from kinetic to potential, back to kinetic and so on. If the mass/spring system has no

friction to dissipate energy, the oscillations will continue forever. In the LC circuit the energy is

initially stored in the capacitor, and is then transferred to the inductor, back to the capacitor

and so on, and the oscillations continue indefinitely as long as there is no resistance to dissipate

the energy.

6) SERIES LRC CIRCUITS

As a next example lets consider the series .LRC" cir-

cuit shown at the right. Notice that since the eiements are

connected in series. each of the three elements will have

the same current 1(t). The voltage we have applied is si-

nusoidal, and so we know that the current will also be si-

nusoidal. Finally we know (from Kirchhoff's voltage rule)

that the applied voltage from the AC source must equal

the sum of the voltage drops across the individual circuit

elements

vs(il : vR(t) + vc\) + vL(t).

The main complication of using this equation is that while

the Va, Vg and y, are all sinewaves, the three voltages are

not in phase with each other.

Ik)

\4((0

Using our results from the sections 3) and 4) above we

can learn something about the amplitude of each voltage.

If 16 is the amplitude of the current, then Vt+)

vnp : IoR Vcp : IoXc Vt,o : IoXt

We also know what the phase relations should be. V6(t)

should be in phase with I(t), V6'(t) should trail 1(t) by 90'

and. V1(t) should lead 1(t) by 90'. Notice that at any given

instant, Vg(t) and V;,(t) actualiy canceli rather than add.

So the problem we have is to add three voltages that are not in phase. We could try to do

this with trig formulas, but it's much easier to make a simple geometrical picture. The idea is to

make use ofthe fact that the functions sin0 and cosd have simple meanings for right triangles. In
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the picture below, ,4s cos 0 is just the horizontal component of a line of length .49. We call the

arrow in the drawing a "phasor". To represent the function -40 cosaJt we need to imagine that

the phasor rotates counterclockwise (the direction of increasing d) at angular velocity cr starting

from d : 0 at time , : 0. The horizontal component of the phasor then traces out the cosine

function. The function Aosinout can be represented in the same way except that in this case we

start at t :0 with the phasor pointing downward.
\

N z

Now lets make a phasor diagram to represent the cur-

rent and voltages in our LRC circuit. We will have 4 pha-

sors in a1l, one for the current, one each for Vp, V6 and Vy.

Start by choosing some arbitrary direction for the current

(any direction is OK, since different directions just corre-

spond to different times). Once thC direction ofI is chosen

we know how to find the correct directions for the remain-

ing phasors. We just need to remember that 76 is in phase

with I, Vy leads 1 by 90' and V6 trails 1 by 90'.

, 
Aosi"(nt

erc.

The usefulness of the drawing is that is shows us how to

add the three voltages. We just combine the three phasors

adding them in the same way that we would add vectors.

Recalling that Vp*Vg t [, is supposed to be Vs we easily

find (from the picture) that

Vsp : lv|,o + (Vt ,o - vg,p)'); .

from the previous page we can write our result in the form ofUsing the formulas for Vpp

Ohm's Law

Vsp : IsZ '

where

The quantity Z , which is called the "impedance" of the circuit, can be thought of as the efective

resistance of the LRC combination.

L pocoe
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Our phasor diagr^"' also provides information about the phase of the current relative to the

applied voltage. Flom the construction above we see that the applied voltage leads the current

by an angle d given by

tan { -
Xt -Xc

7) RESONANCE BEHAVIOR

One of the interesting features of LRC circuits is that the response of the circuit can change

drornatically if the frequency of the applied voltage is "tuned' to the "resonant frequency" of the

circuit. To understand the resonant behavior we write the impedance of the circuit in the form

z =ln'+

The resonant frequency is the frequency at which X6 and X, are equal: t.e when

(,"- #l)'

" 
\/LC

You may recall that this is just the natural frequency of the LC circuit we discuss€d earlier.

Right at the resoDant frequency, the impedance of the circuit reduces to ft and so if l? is small

we can get relatively large currents, even if the inductor and the capacitor individually have very

large impedances. But as soon as we go away from the resonant frequeucy (say by a few percent)

the cancellation between Vt and Vc is no longer complete, and the amplitude of the resulting

current is greatly reduced.

Many physical systerrs will show resonarce behavior basically like that of an LRC circuit.

If the system ha. a natural oscillation frequency and there is a6 mschanism to dissipate enerry,

large arnplitude oscillations occur when the system is driven at the natural frequency. Resonances

are seen in mechanical systerns, electrical systerns and also in atorns and nuclei. For example MRI

scans (Magnetic Resonance Imaging) make use of a technique for detecting nuclei of hydrogen

atom.s in our bodies by stimulating the nuclei at a frequency equal to the precession frequency of

the nuclear magnetic dipole moments in the magnetic field of the scanner. The inventers of this

technique just won the Nobel Prize.


