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A police officer can clock the speed of your automobile with a radar device. Thi
device works using the Doppler effect for electromagnetic waves discussed in
Chapter 21. Is it possible to accelerate an object such as a rocket to a speed
greater than the speed of light? (Trent Steffler/David R. Frazier Photolibrary)

852



853 26.1 Introduction

IEXXl 'NTRODUCTION

Most of our everyday experiences and observations deal with objects that move at
speeds much lower than the speed of light. Newtonian mechanics and the early
ideas on space and time were formulated to describe the motion of such objects.
As we saw in the chapters on mechanics, this formalism is very successful in describ-
ing a wide range of phenomena. Although Newtonian mechanics works very well
at low speeds, it fails when applied to particles whose speeds approach that of light.
The predictions of Newtonian theory at high speeds can be tested by accelerating
an electron through a large electric potential difference. For example, it is possible
to accelerate an electron to a speed of 0.99¢by using a potential difference of several
million volts. According to Newtonian mechanics, if the potential difference (as
well as the corresponding energy) is increased by a factor of 4, then the speed of
the electron should be doubled to 1.98¢. However, experiments show that the speed
of the electron always remains lower than the speed of light, regardless of the size
of the accelerating voltage. Because Newtonian mechanics places no upper limit
on the speed that a particle can attain, it is contrary to modern experimental results
and is clearly a limited theory.

In 1905, at the age of 26, Einstein published his special theory of relativity.
Regarding the theory, Einstein wrote,

The relativity theory arose from necessity, from serious and deep contradic-
tions in the old theory from which there seemed no escape. The strength of
the new theory lies in the consistency and simplicity with which it solves all
these difficulties, using only a few very convincing assumptions.’

Although Einstein made many other important contributions to science, his theory
of relativity alone represents one of the greatest intellectual achievements of
the 20th century. With this theory, experimental observations over the range from
v = 0 to speeds approaching the speed of light can be predicted. Newtonian me-
chanics, which was accepted for more than 200 years, is in fact a specialized case of
Einstein’s theory. This chapter introduces the special theory of relativity, with em-
phasis on some of the consequences of the theory. A discussion of general relativity
and some of its consequences is presented in Section 26.10.
As we shall see, the special theory of relativity is based on two postulates:

1. The laws of physics are the same in all inertial reference systems.

2. The speed of light in a vacuum is always measured to be 3 X 10® m/s,
and the measured value is independent of the motion of the observer or
of the motion of the source of light.

Special relativity covers such phenomena as the slowing down of moving clocks
and the contraction of moving rods as measured by a stationary observer. In addi-
tion to these topics, we also discuss the relativistic forms of momentum and energy,
terminating the chapter with the famous mass-energy equivalence formula,

E = mc2.

L A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961.
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Thinking Physics 1

Imagine a very powerful lighthouse with a rotating beacon. Imagine also drawing a
horizontal circle around the lighthouse, with the lighthouse at the center. Along the
circumference of the circle, the light beam lights up a portion of the circle and the lit
portion of the circle moves around the circle at a certain tangential speed. If we now
imagine a circle twice as big in radius, the tangential speed of the lit portion is faster,
because it must travel a larger circumference in the time of one rotation of the light
source. Imagine that we continue to make the circle larger and larger, eventually mov-
ing it out into space. The tangential speed of the lit portion will keep increasing. Is it
possible that the tangential speed could become larger than the speed of light? Would
this violate a principle of special relativity?

Explanation For a large enough circle, it is possible that the tangential speed of the
lit portion of the circle could be larger than the speed of light. This does not violate a
principle of special relativity, however, because no matter or information is traveling
faster than the speed of light.

THE PRINCIPLE OF RELATIVITY

[n order to describe a physical event, it is necessary to choose a frame of reference.
for example, when you perform an experiment in a laboratory, you select a coor-
linate system, or frame of reference, that is at rest with respect to the laboratory.
However, suppose an observer in a passing car moving at a constant velocity with
‘espect to the lab were to observe your experiment. Would the observations made
>y the moving observer differ dramatically from yours? That is, if you found New-
‘on’s first law to be valid in your frame of reference, would the moving observer
igree with you? According to the principle of Newtonian relativity, the laws of
mechanics are the same in all inertial frames of reference. Inertial frames of
‘eference are those reference frames in which Newton’s first law, the law of inertia,
s valid. For the situation just described, the laboratory coordinate system and the
:oordinate system of the moving car are both inertial frames of reference. As a
“onsequence, if the laws of mechanics are found to be true in the lab, the person
n the car must also observe the same laws.

Let us describe 2 common observation to illustrate the equivalence of the laws
>f mechanics in different inertial frames. Consider an airplane in flight, moving
vith a constant velocity, as in Figure 26.1a. If a passenger in the airplane throws a
»all straight up in the air, the passenger observes that the ball moves in a vertical
vath. The motion of the ball is precisely the same as it would be if the ball were
hrown while at rest on Earth. The law of gravity and the equations of motion under
:onstant acceleration are obeyed whether the airplane is at rest or in uniform mo-
ion. Now consider the same experiment when viewed by another observer at rest
m the Earth. This stationary observer views the path of the ball to be a parabola,
15 in Figure 26.1b. Furthermore, according to this observer, the ball has a velocity
o the right equal to the velocity of the plane. Although the two observers disagree

W certain aenecte nf the evneriment hath aoree that the matian af tha hall aheve
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(a)

(b)

the law of gravity and Newton’s laws of motion. Thus, we draw the following im-
portant conclusion: There is no preferred frame of reference for describing the
laws of mechanics.

THE SPEED OF LIGHT

It is quite natural to ask whether the concept of Newtonian relativity in mechanics
also applies to experiments in electricity, magnetism, optics, and other areas. For
example, if we assume that the laws of electricity and magnetism are the same in
all inertial frames, a paradox concerning the speed of light immediately arises. This
can be understood by recalling that according to electromagnetic theory, the speed
of light always has the fixed value of 2.997 924 58 X 10°® m/s in free space. But this
is in direct contradiction to common sense. For example, suppose a light pulse is
sent out by an observer in a boxcar moving with a velocity v (Fig. 26.2). The light

Figure 26.2 A pulse of light is sent out by a person in a moving boxcar. According to
Newtonian relativity, the speed of the pulse should be ¢ + v relative to a stationary ob-
server.

igure 26.1 (a) The observer on
1€ airplane sees the ball move in a
ertical path when thrown upward.
b) The Earth observer views the
ath of the ball to be a parabola.
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jure 26.3 If the speed of the
ier wind relative to the Earth is v,
1 cis the speed of light relative to
: ether, the speed of light relative
the Farth is (a) ¢ + vin the
wnwind direction, (b) ¢ — vin
: upwind direction, and

(2 — v®)1“2 in the direction per-
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pulse has a velocity ¢ relative to observer S’ in the boxcar. According to Newto:
relativity, the velocity of the pulse relative to the stationary observer S outside
boxcar should be € + v. This obviously contradicts Einstein’s theory, which pc
lates that the velocity of the light pulse is the same for all observers.

In order to resolve this paradox, we must conclude either that (1) the addi
law for velocities is incorrect or that (2) the laws of electricity and magnetism
not the same in all inertial frames. If the Newtonian addition law for velocities v
incorrect, we would be forced to abandon the seemingly “obvious” notions of
solute time and absolute length that form the basis for this law.

If instead we assume that the second conclusion is true, then a preferred
erence frame must exist in which the speed of light has the value ¢, whereas in
other reference frame the speed of light must have a value that is greater or
than c It is useful to draw an analogy with sound waves, which propagate thro
a medium such as air. The speed of sound in air is about 330 m/s when meast
in a reference frame in which the air is stationary. However, the speed of soun
greater or less than this value when measured from a reference frame that is mo
with respect to the air.

In the case of light signals (electromagnetic waves), recall that elec
magnetic theory predicted that such waves must propagate through free space
a speed equal to the speed of light. However, the theory does not require
presence of a medium for wave propagation. This is in contrast to other type
waves that we have studied, such as water and sound waves, that do require a
dium to support the disturbances. In the 19th century, physicists thought that ¢
tromagnetic waves also required a medium in order to propagate. They propc
that such a medium existed, and they gave it the name luminiferous ether.
ether was assumed to be present everywhere, even in empty space, and light w:
were viewed as ether oscillations. Furthermore, the ether would have to be a
less but rigid medium with no effect on the motion of planets or other objc
These are strange concepts indeed. In addition, it was found that the troublesc
laws of electricity and magnetism would take on their simplest forms in a fram
reference at rest with respect to the ether. This frame was called the absolute fr
The laws of electricity and magnetism would be valid in this absolute frame,
they would have to be modified in any reference frame moving with respect to
absolute frame.

As a result of the importance attached to this absolute frame, it becam
considerable interest in physics to prove by experiment that it existed. A di
method for detecting the ether wind was to measure its influence on the spee:
light relative to a frame of reference on Earth. If v is the velocity of the ether rela
to the Earth, then the speed of light should have its maximum value, ¢ + v, w
propagating downwind, as shown in Figure 26.3a. Likewise, the speed of 1
should have its minimum value, ¢ — v, when propagating upwind, as in Fig
26.3b, and some intermediate value, (¢? — v2)!/2, in the direction perpendic
to the ether wind, as in Figure 26.3c. If the Sun is assumed to be at rest in the et
then the velocity of the ether wind would be equal to the orbital velocity
the Earth around the Sun, which has a magnitude of about 3 X 10* m/s. Becsa
c=38 X 10°m/s, a change in speed of about 1 part in 10% m/s for measuremc
in the upwind or downwind directions should be detectable. However, as we s
see in the next section, all attempts to detect such changes and establish the ¢
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THE MICHELSON -MORLEY EXPERIMENT M, |

The most famous experiment designed to detect small changes in the speed of light Kilicvwnd

was performed in 1887 by A. A. Michelson (1852-1931) and E. W. Morley (1838- A v
1923). We should state at the outset that the outcome of the experiment was neg- = [

ative, thus contradicting the ether hypothesis. The experiment was designed to \ 5 a R i
determine the velocity of the Earth with respect to the hypothetical ether. The tool - v I M,
used was the Michelson interferometer, shown in Figure 26.4. When one of the

arms of the interferometer was aligned along the direction of the Earth’s motion

through space, the motion of the Earth through the ether would have been equiv-

alent to the ether flowing past the Earth in the opposite direction. This ether wind

blowing in the opposite direction should have caused the speed of light as measured

in the Earth’s frame of reference to be ¢ — v as it approached the mirror M, in Tekestops

Figure 26.4 and ¢ + vafter reflection. The speed vis the speed of the Earth through i
space, and hence the speed of the ether wind, and cis the speed of light in the
absolute ether frame. In the experiment the two beams of light reflected from M,

and M, recombined, and an interference pattern consisting of alternating dark and .
bright bands or fringes was formed. During the experiment, the interference pat- Figure 26.4 According to the
tern was observed while the interferometer was rotated through an angle of 90°. ether-wind theory, the speed of light
The effect of this rotation should have been to cause a slight but measurable shift should be c-wvas the beam ap-
in the fringe pattern. Measurements failed to show any change in the interference proaches mirror M;and ¢+ vafter
. . reflection.
pattern! The Michelson—Morley experiment was repeated by other researchers un-
der various conditions and at different locations, but the results were always the
same: No fringe shift of the magnitude required by the ether hypothesis was
ever observed.
The negative results of the Michelson—Morley experiment meant that it was
impossible to measure the absolute orbital velocity of the Earth with respect to the
ether frame. However, as we shall see in the next section, Einstein developed a
postulate for his theory of relativity that places quite a different interpretation on
these results. In later years, when more was known about the nature of light, the
idea of an ether that permeates all of space was relegated to the ash heap of worn-
out concepts. Light is now understood to be an electromagnetic wave that requires
no medium for its propagation. As a result, the idea of having an ether in which
electromagnetic waves travel became unnecessary.

Details of the Michelson - Morley Experiment Optional Section

As we mentioned earlier, the Michelson—Morley experiment was designed to detect
the motion of the Earth with respect to the ether. Before we examine the details
of this important, historical experiment, it is instructive to first consider a race
between two airplanes, as shown in Figure 26.5a. One airplane flies from point O
to point A perpendicular to the direction of the wind, and the second airplane flies
from point O to point B parallel to the wind. We shall assume that they start at O
at the same time, travel the same distance L with the same cruising speed ¢ with
respect to the wind, and return to 0. Which airplane will win the race? In order to
answer this question, we shall first calculate the time of flight for both airplanes.
First, consider the airplane that moves along path I parallel to the wind. As it
moves to the right, its speed is enhanced by the wind, and its velocity with respect



Figure 26.5 (a) If an airplane
wishes to travel from O to A with a
wind blowing to the right, it must
head into the wind at some angle.
{(b) Vector diagram for determining
the airplane’s direction for the trip
from O to A. (c) Vector diagram for
determining its direction for the
trip from A to O.

Albert A. Michelson,

German American physicist
(1852-1931)

Michelson spent much of his life
making accurate measurements of the
speed of light. In 1907 he was the first
American to be awarded the Nobel
prize, which he received for his work
in optics. His most famous experiment,
conducted with Edward Morley in
1887, implied that it was impossible to
measure the absolute velocity of the
Earth with respect to the ether. (AP
Emilio Segré Visual Archives, Michelson
Collection)
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to the Earth is ¢ + v. As it moves to the left on its return journey, it must fly opposite
the wind; hence its speed with respect to the Earth is ¢ — v. Thus, the times of flight
to the right and to the left are, respectively,

L L
and =
ctv c— v

tR:

and the total time of flight for the airplane moving along path I is

L L 2Lc
tl:tR+tL=c+v+c—v=c2

— 02

= [26.1]
c (1 — %;)

Now consider the airplane flying along path II. If the pilot aims the airplane directly
toward point A, it will be blown off course by the wind and will not reach its desti-
nation. To compensate for the wind, the pilot must point the airplane into the wind
at some angle as shown in Figure 26.5a. This angle must be selected so that the
vector sum of ¢ and v leads to a velocity vector pointed directly toward A. The
resultant vector diagram is shown in Figure 26.5b, where v, is the velocity of
the airplane with respect to the ground as it moves from O to A. From the Pythag-
orean theorem, the magnitude of the vector v, is

2
/ v
v,=vE—v2=¢ 1—;

Likewise, on the return trip from A to O, the pilot must again head into the wind
so that the airplane’s velocity with respect to the Earth, v, will be directed toward
O, as shown in Figure 26.5c. From this figure, we see that

2
/ v
v =2 —v2=¢ 1—;
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Thus, the total time of flight for the trip along path 1l is

L L L L
v, Uy 22 02
c - -CE ¢ 1 - ;5
2L
= [26.2]
¢ | <

Comparing Equations 26.1 and 26.2, we see that the airplane flying along path II
wins the race. The difference in flight times is given by

2L 1 1
Atztl_t2=_ )

¢ v B v2
(1 ) ==

This expression can be simplified using the following binomial expansions in v/c
(assumed to be much smaller than 1) after dropping all terms higher than second
order:

and

At=— [26.3]

The analogy between this airplane race and the Michelson—Morley experiment
is shown in Figure 26.6a. Two beams of light travel along two arms of an interfer-
ometer. In this case, the “wind” is the ether blowing across the Earth from left to

Y I
& L L q
S g v
v :
Y o=
Velocity of
A ether wind Y
L | I
A

4
rT" 54

—
~
8, S

(a) (b)

Figure 26.6 (a) Top view of the
Michelson—Morley interferometer,
where v is the velocity of the ether
and L is the length of each arm.
(b) When the interferometer is ro-
tated by 90°, the role of each arm is
reversed.
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right as the Earth moves through the ether from right to left. Because the speed of
the Earth in its orbital path is approximately equal to 3 X 10* m/s, the speed of
the wind should be at least this great. The two light beams start out in phase and
return to form an interference pattern. Let us assume that the interferometer is
adjusted for parallel fringes and that a telescope is focused on one of these fringes.
The time difference between the two light beams gives rise to a phase difference
between the beams, producing an interference pattern when they combine at the
position of the telescope. The difference in the pattern is detected by rotating the
interferometer through 90° in a horizontal plane, so that the two beams exchange
roles (Fig. 26.6b). This results in a net time shift of twice the time difference given
by Equation 26.3. Thus, the net time difference is

2Lv?
Aty =2 A= : [26.4]
¢
The corresponding path difference is
Lv?
Ad=cAt =2 > [26.5]

[4

In the first experiments by Michelson and Morley, each light beam was reflected
by the mirrors many times to give an increased effective path length L of about 11
meters. Using this value and taking v to be equal to 3 X 10* m/s gives a path dif-
ference of

_2(11 m)(3.0 X 10* m/s)2
T (8.0 X 1083 m/s)?

This extra travel distance should produce a noticeable shift in the fringe pattern.
Specifically, calculations show that if the pattern is viewed while the interferometer
is rotated through 90°, a shift of about 0.4 fringes should be observed. The instru-
ment used by Michelson and Morley was capable of detecting a shift in the fringe
pattern as small as 0.01 fringes. However, they detected no shift in the fringe pattern.
Since then, the experiment has been repeated many times by various scientists
under various conditions and no fringe shift has ever been detected. Thus, it was
concluded that the motion of the Earth with respect to the ether cannot be de-
tected.

Many efforts were made to explain the null results of the Michelson—Morley
experiment. For example, perhaps the Earth drags the ether with it in its motion
through space. To test this assumption, interferometer measurements were made
at various altitudes, but again no fringe shift was detected. In the 1890s G. F. Fitz-
gerald and H. A. Lorentz tried to explain the null results by making the following
ad hoc assumption. They proposed that the length of an object moving along
the direction of the ether wind would contract by a factor of /1 — v%/¢2. The net
result of this contraction would be a change in length of one of the arms of the
interferometer such that no path difference would occur as the interferometer was
rotated.

No other experiment in the history of physics has received such valiant efforts
to explain the absence of an expected result as has the Michelson—Morley experi-
ment. The stage was set for the brilliant Albert Einstein, who solved the problem
in 1905 with his special theory of relativity.

Ad =22X10""m
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XX EINSTEIN'S PRINCIPLE OF RELATIVITY

In the previous section we noted the serious contradiction between the Newtonian
addition law for velocities and the fact that the speed of light is the same for all
observers. In 1905 Albert Einstein proposed a theory that would resolve this con-
tradiction but at the same time would completely alter our notions of space and
time. Einstein based his special theory of relativity on the following general hy-
pothesis, which is called the principle of relativity:

All the laws of physics are the same in all inertial frames.

An immediate consequence of the principle of relativity is that

The speed of light in a vacuum has the same value, ¢ = 2.997 924 58 X 108 m/s,
in all inertial reference frames.

In other words, anyone who measures the speed of light will get the same value, .
This implies that the ether does not exist. Together, the principle of relativity and
its immediate consequence are often referred to as the two postulates of special
relativity.

The null result of the Michelson—Morley experiment can be readily understood
within the framework of Einstein’s theory. According to his principle of relativity,
the premises of the Michelson—Morley experiment were incorrect. In the process
of trying to explain the expected results, we stated that when light traveled against
the ether wind its speed was ¢ — v. However, if the state of motion of the observer
or of the source has no influence on the value found for the speed of light, the
measured value will always be ¢ Likewise, the light makes the return trip after
reflection from the mirror at a speed of ¢, not the speed of ¢ + v. Thus, the motion
of the Earth should not influence the fringe pattern observed in the Michelson—
Morley experiment and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that relative mo-
tion is unimportant when measuring the speed of light. At the same time, we must
alter our common-sense notions of space and time and be prepared for some rather
bizarre consequences.

CONSEQUENCES OF SPECIAL RELATIVITY

Almost everyone who has dabbled even superficially in science is aware of some of
the startling predictions that arise because of Einstein’s approach to relative mo-
tion. As we examine some of the consequences of relativity in this section, we shall
find that they conflict with some of our basic notions of space and time. We shall
restrict our discussion to the concepts of length, time, and simultaneity, which are
quite different in relativistic mechanics from what they are in Newtonian mechanics.
For example, we shall see that the distance between two points and the time interval
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Albert Einstein (1879-1955)

Einstein, one of the greatest physicists
of all times, was born in Ulm,
Germany. In 1905, at the age of 26, he
published four scientific papers that
revolutionized physics. Two of these
papers were concerned with what is
now considered his most important
contribution; the special theory of
relativity. In 1916, Einstein published
his work on the general theory of
relativity. The most dramatic
prediction of this theory is the degree
to which light is deflected by a
gravitational field. Measurements
made by astronomers on bright stars
in the vicinity of the eclipsed sun in
1919 confirmed Einstein's prediction,
and as a result Einstein became a
world celebrity. Einstein was deeply
disturbed by the development of
quantum mechanics in the 1920s
despite his own role as a scientific
revolutionary. In particuiar, he could
never accept the probabilistic view of
events in nature that is a central
feature of guantum theory. The last
few decades of his life were devoted
to an unsuccessful search for a unified
theory that would combine gravitation
and electromagnetism. (AIP Niels Bohr
Library}
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Absolute length and absolute time »  between two events depend on the frame of reference in which they are measured.
intervals are meaningless in That is, in relativity, there is no such thing as absolute length or absolute time.
relativity. Furthermore, events at different locations that occur simultaneously in one frame

are not simultaneous in another frame.

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that there is a universal time scale that
is the same for all observers. In fact, Newton wrote, “Absolute, true, and mathe-
matical time, of itself, and from its own nature, flows equably without relation to
anything external.” In his special theory of relativity, Einstein abandoned this as-
sumption. According to Einstein, time interval measurements depend on the
reference frame in which they are made.

Einstein devised the following thought experiment to illustrate this point. A
boxcar moves with uniform velocity, and two lightning bolts strike its ends, as in
Figure 26.7a, leaving marks on the boxcar and the ground. The marks left on the
boxcar are labeled A’ and B, and those on the ground are labeled A and B. An
observer at 0’ moving with the boxcar is midway between A’ and B', and an observer
on the ground at O is midway between A and B. The events recorded by the ob-
servers are the light signals from the lightning bolts.

Let us assume that the two light signals reach the observer at O at the same
time, as indicated in Figure 26.7b. This observer realizes that the light signals have
traveled at the same speed over distances of equal length. Thus, the observer at O
concludes that the events at A and B occurred simultaneously. Now consider the
same events as viewed by the observer on the boxcar at . By the time the light
has reached the observer at O, the observer at O’ has moved, as indicated in Figure
26.7b. Thus, the light signal from B' has already swept past 0', whereas the light
from A’ has not yet reached O'. According to Einstein’s second postulate, the ob-
server at O’ must find that light travels at the same speed as that measured by the
observer at O. Therefore, the observer at O’ concludes that the lightning struck the
front of the boxcar before it struck the back. This thought experiment clearly dem-

(@) (b)

Figure 26.7 Two lightning bolts strike the ends of a moving boxcar. (a) The events ap-
pear to be simultaneous to the stationary observer at O, who is midway between A and B.
(b) The events do not appear to be simultaneous to the observer at O/, who claims that the
front of the train is struck before the rear.
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onstrates that the two events that appear to be simultaneous to the observer at O
do not appear to be simultaneous to the observer at O'. In other words,

Two events that are simmultaneous in one reference frame are in general not
simultaneous in a second frame moving with respect to the first. That is,
simultaneity is not an absolute concept.

At this point, you might wonder which observer is right concerning the two
events. The answer is that both are correct because the principle of relativity states
that there is no preferred inertial frame of reference. Although the two observers
reach different conclusions, both are correct in their own reference frames because
the concept of simultaneity is not absolute.

Time Dilation

Consider a vehicle moving to the right with a speed v, as in Figure 26.8a. A perfectly
reflecting mirror is fixed to the ceiling of the vehicle, and an observer at O at rest
in this system holds a flash gun a distance d below the mirror. At some instant, the
flash gun goes off and a pulse of light is released. Because the light pulse has a
speed ¢, the time it takes it to travel from the observer to the mirror and back again
can be found from the definition of velocity,

distance traveled 2d
At, = - =— [26.6]
velocity c

where At, is the time interval measured by O, the observer who is at rest in the
moving vehicle.

?’_ S k][_ sy
J =

11

(a) (b)

Figure 26.8 (a) A mirror is fixed to a moving vehicle, and a light pulse leaves O’ at rest
in the vehicle. (b) Relative to a stationary observer on Earth, the mirror and O’ move with
a speed v. Note that the distance the pulse travels is greater than 24 as measured by the
stationary observer. (c) The right triangle for calculating the relationship between At

and A,
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Time dilation p

A clock in motion runs more slowly p»
than an identical stationary clock.
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Now consider the same set of events as viewed by an observer at Oin a stationary
frame (Fig. 26.8b). According to this observer, the mirror and flash gun are moving
to the right with a speed of v. The sequence of events just described would appear
entirely different to this stationary observer. By the time the light from the flash
gun reaches the mirror, the mirror will have moved a distance of v At/2, where At
is the time it takes the light pulse to travel from O to the mirror and back, as
measured by the stationary observer. In other words, the stationary observer con-
cludes that, because of the motion of the system, the light, if it is to hit the mirror,
will leave the flash gun at an angle with respect to the vertical. Comparing Figures
26.8a and 26.8b, we see that the light must travel farther in the stationary frame
than in the moving frame.

Now, according to Einstein’s second postulate, the speed of light must be ¢ as
measured by both observers. Therefore, it follows that the time interval Af, mea-
sured by the observer in the stationary frame, is longer than the time interval A,
measured by the observer in the moving frame. To obtain a relationship between
At and At, it is convenient to use the right triangle shown in Figure 26.8c. The
Pythagorean theorem applied to this triangle gives

(cAt)2 <v At)2
- — - + d2
2 2

2d 2d

Solving for At gives

At = = [26.7]
J =2 o1 -2/
Because At, = 2d/ ¢, we can express Equation 26.7 as
At,
At = = yAt, [26.8]

V1 - v%/c2?

where y = 14/ 1 — v2/¢% This result says that the time interval measured by the
observer in the stationary frame is longer than that measured by the observer in the
moving frame (v is always greater than unity).

For example, suppose an observer in a moving vehicle has a clock that he uses
to measure the time required for the light flash to leave the gun and return. Let
us assume that the measured time interval in this frame of reference, At[,, is one
second. (This would require a very tall vehicle.) Now let us find the time interval
as measured by a stationary observer using an identical clock. If the vehicle is trav-
eling at half the speed of light (v = 0.500¢), then y = 1.15, and according to Equa-
tion 26.8 At = y At,, = 1.15(1.00 s) = 1.15 s. Thus, when the observer on the mov-
ing vehicle claims that 1.00 s has passed, a stationary observer claims that 1.15 s has
passed. From this we may conclude that,

According to a stationary observer, a moving clock runs more slowly than
an identical stationary clock by a factor of y~!. This effect is known as time
dilation.
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The time interval At[, in Equation 26.8 is called the proper time. In general,
proper time is defined as the time interval between two events as measured by
an observer who sees the events occur at the same place. In our case, the ob-
server at O’ measures the proper time. That is, proper time is always the time
interval measured with a single clock at rest in the frame in which the events
take place at the same position.

We have seen that moving clocks run slow by a factor of y~!. This is true for
ordinary mechanical clocks as well as for the light clock just described. In fact, we
can generalize these results by stating that all physical processes, including chem-
ical and biological reactions, slow down relative to a stationary clock when
they occur in a moving frame. For example, the heartbeat of an astronaut moving
through space has to keep time with a clock inside the spaceship. Both the spaceship
clock and the heartbeat are slowed down relative to a stationary clock. The astronaut
would not, however, have any sensation of life slowing down in the spaceship.

Time dilation is a very real phenomenon that has been verified by various
experiments. Muons are unstable elementary particles with a charge equal to that
of the electron and a mass 207 times that of the electron. They can be produced
by the absorption of cosmic radiation high in the atmosphere. These unstable par-
ticles have a lifetime of only 2.2 us when measured in a reference frame at rest with
respect to them. If we take 2.2 us as the average lifetime of a muon and assume
that their speed is close to the speed of light, we find that these particles can travel
only about 600 m before they decay (Fig. 26.9a). Hence, they could never reach
the Earth from the upper atmosphere where they are produced. However, experi-
ments show that a large number of muons do reach the Earth, and the phenomenon
of time dilation explains how. Relative to an observer on Earth, the muons have a
lifetime equal to yr,, where Ty = 2.2 us is the lifetime in a frame of reference
traveling with the muons. For example, for v = 0.99¢, y = 7.1 and y7 = 16 us.
Hence, the average distance traveled as measured by an observer on Earth is
yvt = 4800 m, as indicated in Figure 26.9b.

In 1976 experiments with muons were conducted at the laboratory of the Eu-
ropean Council for Nuclear Research (CERN) in Geneva. Muons were injected into
a large storage ring, reaching speeds of about 0.9994¢. Electrons produced by the
decaying muons were detected by counters around the ring, enabling scientists to
measure the decay rate, and hence the lifetime of the muons. The lifetime of the
moving muons was measured to be about 30 times as long as that of stationary
muons to within two parts in a thousand, in agreement with the prediction of
relativity.

The results of an experiment reported by Hafele and Keating provided direct
evidence for the phenomenon of time dilation.? The experiment involved the use
of very stable cesium-beam atomic clocks. Time intervals measured with four such
clocks in jet flight were compared with time intervals measured by reference atomic
clocks at the U.S. Naval Observatory. (Because of the Earth’s rotation about its axis,
a ground-based clock is not in a true inertial frame.) Time intervals measured with
the flying clocks were compared to time intervals measured with the Earth-based
reference clocks. In order to compare the results with the theory, many factors had
to be considered, including periods of acceleration and deceleration relative to the

2 J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains
Observed,” Science, July 14, 1972, p. 168.

Muon's

) frame
600 m ; T,=2.2 s
N
(a)
Earth's
frame
= T=YT,= 16 us
4800 m

|

Figure 26.9 (a) The muons
travel only about 600 m as mea-
sured in the muons’ reference
frame, in which their lifetime is
about 2.2 us. Because of time dila-
tion, the muons’ lifetime is longer
as measured by the observer on
Earth. (b) Muons traveling with a
speed of 0.99¢ travel a distance of
about 4800 m as measured by an ob-
server on Earth.

(b)
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Earth, variations in direction of *=~::- , and the weaker gravitational field experi-
enced by the flying clocks. Their ... ts were in good agreement with the predic-
tions of the special theory of relativity. In their paper, Hafele and Keating report
the following: “Relative to the atomic time scale of the U.S. Naval Observatory, the
flying clocks lost 59 + 10 ns during the eastward trip and gained 273 + 7 ns during
the westward trip. . . . These results provide an unambiguous empirical resolution
of the famous clock paradox with macroscopic clocks.”

Thinking Physics 2

Suppose a student explains time dilation with the following argument: If you start run-
ning at 0.99¢ away from a clock at 12:00, you would not see the time change, because
the light from the clock representing 12:01 would never reach you. What is the flaw in
this argument?

Explanation The inference in this argument is that the velocity of light relative to
the runner is approximately zero— “the light . . . would never reach you.” This is a
Newtonian relativity point of view, in which the relative velocity is a simple subtraction
of running velocity from the light velocity. From the point of view of special relativity,
one of the fundamental postulates is that the speed of light is the same for all observ-
ers, including one running away from the light source at the speed of light. Thus, the
light from 12:01 will move toward the runner at the speed of light.

EXAMPLE 26.1 What Is the Period of the Pendulum?

The period of a pendulum is measured to be 3.0 s in the inertial frame of the pendulum.
What is the period when measured by an observer moving at a speed of 0.95¢ with respect
to the pendulum?

Reasoning and Solution In this case, the proper time is 3.0 s. We can use Equation
26.8 to calculate the period measured by the moving observer:

1
T=yT,=—————T,=(3.2)(30s) = 965
Y | (09507 »= 3DE0s)

2

That is, the observer moving with a speed of 0.95¢ observes that the pendulum slows down.

The Twin Paradox

An interesting consequence of time dilation is the so-called twin paradox. Consider
a controlled experiment involving 20-year-old twin brothers Speedo and Goslo (Fig.
26.10). Speedo, the more adventuresome twin, sets out on a journey toward a star
located 30 lightyears from Earth. His spaceship is able to accelerate to a speed close
to the speed of light. After reaching the star, Speedo becomes very homesick and
immediately returns to Earth at the same high speed. On his return, he is shocked
to find that many things have changed. OId cities have expanded and new cities
have appeared. Lifestyles, fashions, and transportation systems have changed dra-
matically. Speedo’s twin brother, Goslo, has aged to about 80 years old and is now
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(a) (b)

Figure 26.10 (a) As the twins depart, they are the same age. (b) When Speedo returns
from his journey to Planet X, he is younger than his twin Goslo who remained on Earth.

wiser, feeble, and somewhat hard of hearing. Speedo, on the other hand, has aged
only about 10 years. This is because his bodily processes slowed down during his
travels in space.

It is quite natural to raise the question, “Which twin actually travels at a speed
close to the speed of light, and therefore does not age as much?” Herein lies the
paradox: From Goslo’s frame of reference, he is at rest while his brother Speedo
travels at a high velocity. On the other hand, according to the space traveler Speedo,
it is he who is at rest while his brother zooms away from him on Earth and then
returns. This leads to confusion about which twin actually ages more.

In order to resolve this paradox, it should be pointed out that the trip is not
as symmetrical as we may have led you to believe. Speedo, the space traveler, ex-
periences a series of accelerations and decelerations during his journey to the star
and back home, and therefore is not always in uniform motion. This means that
Speedo is in a noninertial frame during part of his trip, so that predictions based
on special relativity are not valid in his frame. On the other hand, the brother on
Earth is in an inertial frame and can make reliable predictions based on the special
theory. The situation is not symmetrical because Speedo experiences accelerations
when his spaceship turns around, whereas Goslo is not subject to such accelerations.
Therefore, the space traveler is indeed younger on returning to Earth.

Length Contraction

We have seen that measured time intervals are not absolute — that is, the time
interval between two events depends on the frame of reference in which it is mea-
sured. Likewise, the measured distance between two points depends on the frame
of reference. The proper length of an object is defined as the length of the object
measured in the reference frame in which the object is at rest. The length
of an object measured in a reference frame in which the object is moving is
always less than the proper length. This effect is known as relativistic length
contraction.

<« The space traveler ages more slowly
than his twin who remains on
Earth.
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Figure 26.11 A meter stick
moves to the right with a speed .
(a) The meter stick as viewed by an
observer at rest with respect to the
meter stick. (b) The meter stick as
seen by an observer moving with a
speed v with respect to the meter
stick. The moving meter stick

is always measured to be shorter than
in its own rest frame by a factor of

V1 —v2/&2

APPLICATI

Passage of Time in
Space Travel.
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To understand relativistic length contraction quantitatively, let us consider a
spaceship traveling with a speed vfrom one star to another, as seen by two observers.
An observer at rest on Earth (and also assumed to be at rest with respect to the two
stars) measures the distance between the stars to be L, (where L, is the proper
length). According to this observer, it takes a time At = L,/v for the spaceship to
complete the voyage. What does an observer in the spaceship measure? Because of
time dilation, the space traveler measures a smaller time of travel: At[, = At/vy. The
observer in the spaceship claims to be at rest and sees the destination star as moving
toward the ship with speed v. Because the space traveler reaches the star in the time
At[,, she concludes that the distance, L, between the stars is shorter than L,. This
distance is given by

At
L=v At[, =y—
Y
Because L,=v At we see that
L=k
Y
or,
Length contraction » L=L,N1—v%/c? [26.9]

According to this result, illustrated in Figure 26.11, if an observer at rest with respect
to an object measures its length to be L,, an observer moving at a relative speed v
with respect to the object will find it to be shorter than its rest length by the factor

V1 = v%/¢% You should note that the length contraction takes place only along
the direction of motion.

Time dilation and length contraction effects have interesting applications for
future space travel to distant stars. In order for the star to be reached in a reasonable
fraction of a human lifetime, the trip must be taken at very high speeds. According
to an Earth-bound observer, the time for a spacecraft to reach the destination star
will be dilated compared to the time interval measured by the travelers. Thus, it
will seem to the travelers to take less time to reach the star than for the Earth-bound
observers, as was discussed in the treatment of the twin paradox. We can also argue
this from length contraction. For the travelers, the distance from Earth to the star
will appear to be contracted, and it will consequently take less time to cover this
shorter distance. Thus, by the time the travelers reach the star, they have aged by
some number of years, while their partners back on Earth will have aged a larger
number of years, the exact ratio depending on the speed of the spacecraft. At a
spacecraft speed of 0.94¢, this ratio is about 3:1.

Another consideration for the space travelers is related to their paychecks. You
are invited to explore this issue in Conceptual Question 3.

EXAMPLE 26.2 The Contraction of a Spaceship

A spaceship is measured to be 120 m long while it is at rest with respect to an observer.
If this spaceship now flies past the observer with a speed of 0.99¢, what length will the
observer measure for the spaceship?
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Solution From Equation 26.9, the length measured by the observer is

2
L=1,J1- /&= (120 m) /1—(0’336) = 17m

Exercise If the ship moves past the observer with a speed of 0.01000¢, what length will
the observer measure?

Answer 119994 m

EXAMPLE 26.3 How High Is the Spaceship?

An observer on Earth sees a spaceship at an altitude of 435 m moving downward toward
the Earth with a speed of 0.970¢c. What is the altitude of the spaceship as measured by an
observer in the spaceship?

Solution The moving observer in the spaceship finds the altitude to be

2
L=1, 1 - 4%/ = (435 m) 1—(—0'9672—06)= 106 m

EXAMPLE 26.4 The Triangular Spaceship

A spaceship in the form of a triangle flies by an observer with a speed of 0.95¢. When the
spaceship is at rest (Fig. 26.12a), the distances x and y are found to be 52 m and 25 m,
respectively. What is the shape of the spaceship as seen by an observer at rest when the
spaceship is in motion along the direction shown in Figure 26.12b?

I N
[ Y
n
. : l , -

(a) (b)

Figure 26.12 (Example 26.4) (a) When the spaceship is at rest, its shape is as
shown. (b) The spaceship appears to look like this when it moves to the right with a
speed v. Note that only its x dimension is contracted in this case.

Solution The observer sees the horizontal length of the spaceship to be contracted to

a length of
0.950?
L=1L,1- /&= (52m) /1—(—621= 16 m

The 25-m vertical height is unchanged because it is perpendicular to the direction of
relative motion between the observer and the spaceship. Figure 26.12b represents the
shape of the spaceship as seen by the observer at rest.
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RELATIVISTIC MOMENTUM

In order to describe properly the motion of particles within the framework of spe-
cial relativity, we must generalize Newton’s laws of motion and the definitions of
momentum and energy. As we shall see, these generalized definitions reduce to the
classical (nonrelativistic) definitions when v is much less than c.

First, recall that conservation of momentum states that when two objects collide,
the total momentum of the system remains constant, assuming that the objects are
isolated (that is, they interact only with each other). If such a collision is analyzed
within the framework of Einstein’s postulates of relativity, it is found that momen-
tum is not conserved if the classical definition of momentum, p = mwv, is used.
However, according to the principle of relativity, momentum must be conserved in
all reference systems. In view of this condition, it is necessary to modify the defi-
nition of momentum to satisfy the following conditions:

1. The relativistic momentum must be conserved in all collisions.
2. The relativistic momentum must approach the classical value mv as the quantity
v/ ¢ approaches zero.

The correct relativistic equation for momentum that satisfies these conditions is

my
4 V1 =02/

where v is the velocity of the particle. The theoretical derivation of this generalized
expression for momentum is beyond the scope of this text. Note that when v is
much less than ¢, the denominator of Equation 26.10 approaches unity, so that p
approaches mv. Therefore, the relativistic equation for momentum reduces to the
classical expression when v is small compared with ¢. When the speed of an object
is less than 0.1¢, the classical expression mv will be equal to its actual (relativistic)
momentum within 0.5% or better.

= ymyv [26.10]

EXAMPLE 26.5 The Relativistic Momentum of an Electron

An electron, which has a mass of 9.11 X 1073! kg, moves with a speed of 0.75¢. Find its
relativistic momentum and compare this value to the momentum calculated from the
classical expression.

Solution From Equation 26.10, with v = 0.75¢, we have

= my
V1= 12/2
_ (9.11 X 103 kg) (0.75 X 8.00 X 10° m/s) _

= 31X1072kg-m/s
V1= (0.75¢2%/ ¢

The classical expression gives

Momentum = mv = 2.1 X 10722 kg - m/s

The (correct) relativistic result is 50% greater than the classical result!
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XX} RELATIVISTIC ADDITION OF VELOCITIES

Imagine a motorcycle rider moving with a speed of 0.80¢ past a stationary observer,
as shown in Figure 26.13. If the rider tosses a ball in the forward direction with a
speed of 0.70¢ relative to himself, what is the speed of the ball as seen by the
stationary observer at the side of the road? Common sense and the ideas of New-
tonian relativity say that the speed should be the sum of the two speeds, or 1.50c.
This answer must be incorrect because it contradicts the assertion that no material
object can travel faster than the speed of light.

Einstein resolved this dilemma by deriving an equation for the relativistic ad-
dition of velocities. For one-dimensional motion, this equation is

+
vy, = —2d—db [26.11]

1+ U2dVdb
2

The left side of this equation and the numerator on the right are like the equations
of Newtonian relativity discussed in Chapter 3, and the evaluation of subscripts is
applied in the same fashion as discussed in Section 3.6. The denominator of Equa-
tion 26.11 is a correction to ordinary Newtonian relativity based on length contrac-
tion and time dilation. Let us apply this equation to the case of the speedy motor-

cycle rider and the stationary observer.
We have

Uym = the velocity of the ball with respect to the motorcycle = 0.70¢,
the velocity of the motorcycle with respect to the stationary observer = 0.80¢,

va
and we want to find

%, = the velocity of the ball with respect to the stationary observer.

Figure 26.13 A motorcycle moves past a stationary observer with a speed of 0.80¢; the
motorcyclist throws a ball in the direction of motion with a speed of 0.70¢ relative to him-
self.

<« Velocity addition
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Thus,
+ 0.70¢ + 0.80
U = Mo (0670 o si) = 0.96¢
C C

EXAMPLE 26.6 Measuring the Speed of a Light Beam

Suppose that the motorcyclist moving with a speed of 0.80¢ turns on beam of light that
moves away from the motorcycle with a speed of ¢ in the same direction as the moving
motorcycle. What speed would the stationary observer measure for the beam of light?

Solution In this case, we have

1y, = the velocity of the light with respect to the motorcycle = ¢
Uno = the velocity of the motorcycle with respect to the stationary observer = 0.80¢

and we want

v, = the velocity of the light with respect to the stationary observer

Thus,
Um T Vo ¢+ 0.80¢
vy = = =
1+ Uim¥mo 1+ (C) (0806)
c &

This is consistent with the statement made earlier that all observers measure the speed
of light to be c regardless of the motion of the source of light.

RELATIVISTIC ENERGY

We have seen that the definition of momentum required generalization to make it
compatible with the principle of relativity. Likewise, the definition of kinetic energy
requires modification in relativistic mechanics. Einstein found that the correct ex-
pression for the kinetic energy of an object is

KE = ymc® — mc? [26.12]

The constant term m¢? in Equation 26.12, which is independent of the speed of
the object, is called the rest energy of the object, Ep.

Ep = me® [26.13]

The term ymc? in Equation 26.12 depends on the object speed and is the sum of
the kinetic and rest energies. We define ymc? to be the total energy, E— that is,
total energy = kinetic energy + rest energy, or

E = yme® = KE + mc? [26.14]

Because y = (1 — v%/¢?)"1/2, we can express E as

2
E=—2C [26.15]

V1 — v2/c?
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This, of course, is Einstein’s famous mass-energy equivalence equation. The
relation E = ymc®> = yEg shows that mass is one possible manifestation of en-
ergy. Furthermore, this result shows that a small mass corresponds to an enormous
amount of energy. This concept is fundamental to much of the field of nuclear
physics.

In many situations, the momentum or energy of a particle is measured rather
than its speed. It is therefore useful to have an expression relating the total energy
E to the relativistic momentum p. This is accomplished by using the expressions
E = ymc? and p = ymv. By squaring these equations and subtracting, we can elim-
inate v. The result, after some algebra, is

E? = p2c2 + (mc?)? [26.16]

When the particle is at rest, p = 0, and so E = Eg = mc?. That is, the total energy
equals the rest energy. For the case of particles that have zero mass, such as photons
(massless, chargeless particles of light), we set m = 0 in Equation 26.16, and we see
that

E= PC [26.17]

This equation is an exact expression relating energy and momentum for photons,
which always travel at the speed of light.

Finally, note that because the mass m of a particle is independent of its motion,
mmust have the same value in all reference frames. For this reason, mis often called
the invariant mass. On the other hand, the total energy and momentum of a
particle depend on the reference frame in which they are measured, because they
both depend on velocity. Because m is a constant, according to Equation 26.16
the quantity E2 — p%¢? must have the same value in all reference frames.

When dealing with subatomic particles, it is convenient to express their energy
in electron volts (€V), because the particles are usually given this energy by accel-
eration through an electrostatic potential difference. The conversion factor is

1eV=1.60x10"19]

For example, the mass of an electron is 9.11 X 103t kg. Hence, the rest energy
of the electron is

m,e? = (9.11 X 1073 kg) (3.00 X 10 m/s)? = 8.20 X 10714
Converting this to eV, we have

m,e® = (8.20 X 1071 ])(1 eV/1.60 X 1071°]) = 0.511 MeV

Thinking Physics 3

A common principle learned in chemistry is conservation of mass. In practice, if the
mass of the reactants is measured before a reaction and the mass of the products is
measured afterward, the results will be the same. In light of special relativity, should
we stop teaching the principle of conservation of mass in chemistry classes?

Explanation Consider a reaction that does not require energy input to occur. This
type of reaction occurs because the products represent a lower overall rest energy

than the reactants; the difference in rest energy is carried as kinetic energy of ejected
particles or radiation. Because the rest energy of the reactants is smaller, according to
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relativity the mass of the reactants should be smaller than that of the products. Thus
the law of conservation of mass is violated. The mass changes are so small, however,
that in practice the law of conservation of mass is still useful.

EXAMPLE 26.7 The Energy Contained in a Baseball

If a 0.50-kg baseball could be converted completely to energy of forms other than mass,
how much energy of other forms would be released?

Solution The energy equivalent of the baseball is found from Equation 26.14 (with
KE = 0):
E=Ep=md = (050 kg) (3.0 X 1085 m/s)2 = 4.5 X 1019]

This is enough energy to keep a 100-W lightbulb burning for approximately ten million
years. However, it is generally impossible to achieve complete conversion from mass to
energy of other forms. For example, mass is converted to energy in nuclear power plants,
but only a small fraction of the mass actually undergoes conversion.

EXAMPLE 26.8 The Energy of a Speedy Electron

An electron moves with a speed of v = 0.850¢. Find its total energy and kinetic energy in
electron volts.

Solution The fact that the rest energy of an electron is 0.511 MeV, along with Equation
26.15, gives

po__md 05 MeV
Ji-v/2 \/ (0.8500)2
-

= 1.90(0.511 MeV) = 0.970 MeV
The kinetic energy is obtained by subtracting the rest energy from the total energy:

KE=E — m,® = 0.970 MeV — 0.511 MeV = 0.459 MeV

EXAMPLE 26.9 The Energy of a Speedy Proton

The total energy of a proton is three times its rest energy.

(a) Find the proton’s rest energy in electron volts.

Solution The rest energy is given by Equation 26.13:

Ep= ml,c2 = (1.67 X 107?" kg) (3.00 X 108 m/s)?
lev

=(150%x 100 ([ —=
(1.50 X 1075)) <1.60><10‘19]

> = 938 MeV

(b) With what speed is the proton moving?
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Solution Because the total energy, E, is three times the rest energy, Equation 26.14
gives

2
_ mye
6'2 =

N

E = ym,* = 3m,,

1
3= —
Vvi—1v%¥/¢
Solving for v gives
A
2 9
©_8
¢z 9
8
v=£c= 2.83 X 103 m/s

3

(c) Determine the kinetic energy of the proton in electron volts.
Solution

KE = E — my® = 3my® — m,® = 2m,¢®
Because m,c® = 938 MeV, KE = 1880 MeV

PARI GENERAL RELATIVITY

Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly
different properties: a gravitational attraction for other masses and an inertial property
that resists acceleration. To designate these two attributes, we use the subscripts g
and ¢ and write

Gravitational property  F, = mya

Inertial property  F, = ma

The value for the gravitational constant G was chosen to make the magnitudes
of m, and m; numerically equal. Regardless of how G is chosen, however, the strict
proportionality of m, and m; has been established experimentally to an extremely
high degree: a few parts in 10'2. Thus, it appears that gravitational mass and inertial
mass may indeed be exactly proportional.

But why? They seem to involve two entirely different concepts: a force of mutual
gravitational attraction between two masses and the resistance of a single mass to
being accelerated. This question, which puzzled Newton and many other physicists
over the years, was answered when Einstein published his theory of gravitation,
known as general relativity, in 1916. Because it is a mathematically complex theory,
we merely offer a hint of its elegance and insight.

In Einstein’s view, the remarkable coincidence that m, and m; seemed to be
exactly proportional was evidence for a very intimate and basic connection between
the two concepts. He pointed out that no mechanical experiment (such as dropping
a mass) could distinguish between the two situations illustrated in Figures 26.14a

Optional Section
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and 26.14b. In each case, a mass released by the observer undergoes a downward
acceleration of grelative to the floor.

Einstein carried this idea further and proposed that no experiment, mechanical
or otherwise, could distinguish between the two cases. This extension to include all
phenomena (notjust mechanical ones) has interesting consequences. For example,
suppose that a light pulse is sent horizontally across the box, as in Figure 26.14c.
The trajectory of the light pulse bends downward as the box accelerates upward to
meet it. Einstein proposed that a beam of light should also be bent downward by a
gravitational field. (No such bending is predicted in Newton’s theory of gravita-
tion.)

The two postulates of Einstein’s general relativity are as follows:

1. All the laws of nature have the same form for observers in any frame of reference,
whether accelerated or not.

2. In the vicinity of any given point, a gravitational field is equivalent to an accel-
erated frame of reference in the absence of gravitational effects. (This is the
principle of equivalence.)

The second postulate implies that gravitational mass and inertial mass are com-
pletely equivalent, not just proportional. What were thought to be two different
types of mass are actually identical.

One interesting effect predicted by general relativity is that time scales are
altered by gravity. A clock in the presence of gravity runs more slowly than one
where gravity is negligible. As a consequence, the frequencies of radiation emitted
by atoms in the presence of a strong gravitational field are shifted to lower fre-
quencies when compared with the same emissions in a weak field. This gravitational
shift has been detected in spectral lines emitted by atoms in massive stars. It has
also been verified on the Earth by comparing the frequencies of gamma rays emit-
ted from nuclei separated vertically by about 20 m.
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Figure 26.14 (a) The observer is at rest in a uniform gravitational field g. (b) The ob-
server is in a region in which gravity is negligible, but the frame of reference is accelerated
by an external force F that produces an acceleration g. According to Einstein, the frames
of reference in parts (a) and (b) are equivalent in every way. No local experiment could
distinguish any difference between the two frames. (c) If parts (a) and (b) are truly equiva-
lent, as Einstein proposed, then a ray of light would bend in a gravitational field.
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Apparent
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Figure 26.15 Deflection of starlight passing near the Sun. Because of this effect, the
Sun and other remote objects can act as a gravitational lens. In his general theory of relativ-
ity, Einstein calculated that starlight just grazing the Sun’s surface should be deflected by
an angle of 1.75".

The second postulate suggests that a gravitational field may be “transformed
away” at any point if we choose an appropriate accelerated frame of reference —a
freely falling one. Einstein developed an ingenious method of describing the ac-
celeration necessary to make the gravitational field “disappear.” He specified a cer-
tain quantity, the curvature of space-time, that describes the gravitational effect at every
point. In fact, the curvature of space-time completely replaces Newton’s gravita-
tional theory. According to Einstein, there is no such thing as a gravitational force.
Rather, the presence of a mass causes a curvature of space-time in the vicinity of
the mass, and this curvature dictates the space-time path that all freely moving
objects must follow. As one physicist says, “Mass one tells space-time how to curve;
curved space-time tells mass two how to move.” One important test of general rel-
ativity is the prediction that a light ray passing near the Sun should be deflected by
some angle. This prediction was confirmed by astronomers as bending of starlight
during a total solar eclipse shortly following World War I (Fig. 26.15).

If the concentration of mass becomes very great, as is believed to occur when
a large star exhausts its nuclear fuel and collapses to a very small volume, a black
hole may form. Here the curvature of space-time is so extreme that, within a certain
distance from the center of the black hole, all matter and light become trapped.

Thinking Physics 4

Atomic clocks are extremely accurate; in fact an error of 1 second in 3 million years is
typical. This error can be described as about one part in 10'4. On the other hand, the
atomic clock in Boulder, Colorado, is often 15 ns faster than the one in Washington
after only one day. This is an error of about one part in 6 X 10'2, which is about 17
times larger than the previously expressed error. If atomic clocks are so accurate, why
does a clock in Boulder not remain in synchronism with one in Washington? (Hint:
Denver, near Boulder, is known as the Mile High City.)

Explanation According to the general theory of relativity, the rate of passage of
time depends on gravity—time runs more slowly in strong gravitational fields. Wash-
ington is at an elevation very close to sea level, whereas Boulder is about a mile higher
in altitude. This will result in a weaker gravitational field at Boulder than at Washing-
ton. As a result, time runs more rapidly in Boulder than in Washington.



Chapter 26 Relativity 878

SUMMARY

The two basic postulates of the special theory of relativity are as follows:

1. The laws of physics are the same in all inertial frames of reference.
2. The speed of light is the same for all inertial observers, independent of their
motion or of the motion of the source of light.

Some of the consequences of the special theory of relativity are as follows:

1. Clocks in motion relative to an observer slow down. This is known as time
dilation. The relationship between time intervals in the moving and at-rest
systems is

At=yAt, [26.8]

where At is the time interval measured in the system in relative motion with
respect to the clock, y = 1/4/1 — v2/¢%, and At, is the proper time interval
measured in the system moving with the clock.

2. The length of an object in motion is contracted in the direction of motion. The
equation for length contraction is

L=1L,1~- v2/¢? [26.9]

where L is the length measured in the system in motion relative to the object,
and L, is the proper length measured in the system in which the object is at
rest.

3. Events that are simultaneous for one observer are not simultaneous for an-
other observer in motion relative to the first.

The relativistic expression for the momentum of a particle moving with a ve-
locity v is

p=— = ymv [26.10]

V1 — 3/
The relativistic expression for the addition of velocities is

Upg T 7
1y, = —4—2& [26.11]
Upd,
1 4 ZadVab
2
where v, is the velocity of object @ with respect to object b,u,4 is the velocity of
object a with respect to object d, and so forth.
The relativistic expression for the kinetic energy of an object is

KE = ymc? — mc? [26.12]

where mc? is the rest energy of the object, Ep.
The total energy of a particle is

2
E=—0 [26.15]

V1 —v%/c?

This is Einstein’s famous mass-energy equivalence equation.
The relativistic momentum is related to the total energy through the equation

E? = p2c% + (mc?)? [26.16]
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MULTIPLE-CHOICE QUESTIONS

1. Which has the greatest momentum: a 1 MeV photon, or now moving toward a tunnel with a speed of 0.8¢. The

a proton or an electron with kinetic energy 1 MeV?
(a) the photon (b) the proton (c) the electron

(d) the electron and the proton (e) They are all the
same.

2. An electron with a kinetic energy 2mc® undergoes a

head-on collision with another electron also with a ki-
netic energy of 2mc®. What is the kinetic energy of one
of these electrons as viewed from the other electron just
before the collision?

@) m (b)2m2 (c)4mE (d) 8m (e) 16me

3. A mass-spring system moving with simple harmonic mo-

tion has a period T'when measured by a ground ob-
server. If the same system is then placed in an inertial
frame of reference that moves past the ground observer
at a speed of 0.50¢, by what factor should 7 be multi-
plied to give the system’s period as measured by the
ground observer?

(@) 0.50 (b)0.87 (c)1.0 (d)1.2

4. A spacecraft was originally 100 m long. However, it is

CONCEPTUAL QUESTIONS

. You are in a speedboat on a lake. You see ahead of you
a wavefront, caused by the previous passage of another
boat, moving away from you. You accelerate, catch up
with, and pass the wavefront. Is this scenario possible if
you are in a rocket and you detect a wavefront of light
ahead of you?

. What two speed measurements will two observers in rela-
tive motion always agree on?

. Suppose astronauts were paid according to time spent
traveling in space. After a long voyage traveling at a
speed near that of light, astronauts return to Earth and
open their pay envelopes. What will be their reaction?

. Consider the incorrect statement, “Matter can neither
be created nor destroyed.” How would you correct this
statement in view of the special theory of relativity?

. You are packing for a trip to another star, to which you
will be traveling at 0.99¢. Should you buy smaller sizes of
your clothing, because you will be skinnier on the trip?
Can you sleep in a smaller cabin than usual, because
you will be shorter when you lie down?

. Itis said that Einstein, in his teenage years, asked the
question, “What would I see in a mirror if I carried it in
my hands and ran at a speed near that of light?” How
would you answer this question?

10.

11.

lady living near the tunnel can control doors that open

and shut at each end of the tunnel and she has found

that the tunnel is 65 m long. The doors are open as the

spacecraft approaches but, the moment that the back of

the spacecraft is in the tunnel, she closes both doors

and then opens the doors very quickly. According to the

captain on the spacecraft,

(a) No door hit his spacecraft because the doors weren’t
closed simultaneously.

(b) No door hit his spacecraft because he finds that length
contraction makes his spacecraft only 60 m long.

(c) No door hits the spacecraft because length contraction
has made the tunnel 108.7 m long.

(d) A door hits his spacecraft.

. The power output of the Sun is 3.7 X 10%® W. How

much matter is converted into energy in the Sun every
second?

(@) 4.1 X 10°kg/s (b) 6.3 X 10° kg/s

(c) 7.4 X 10°kg/s (d) 3.7 X 10° kg/s

. You are observing a rocket moving away from you. You

notice that it is measured to be shorter than when it
was at rest on the ground next to you, and through the
rocket window, you can see a clock. You observe that
the passage of time on the clock is measured to be
slower than that of the watch on your wrist. What if the
rocket turns around and comes toward you? Will it ap-
pear to be longer and will the rocket-bound clock move
faster?

. Two identically constructed clocks are synchronized.

One is put in orbit around the Earth and the other re-
mains on Earth. Which clock runs more slowly? When
the moving clock returns to Earth, will the two clocks
still be synchronized?

. A photon has a zero mass. If a photon is reflected from

a surface, does it exert a force on the surface?

Imagine an astronaut on a trip to Sirius, which is 8 light-
years from the Earth. On arrival at Sirius, the astronaut
finds that the trip lasted 6 years. If the trip was made at
a constant speed of 0.8¢, how can the 8lightyear dis-
tance be reconciled with the 6-year duration?

Explain why it is necessary, when defining length, to
specify that the positions of the ends of a rod are to be
measured simultaneously.
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12. The equation E = mc is often given in popular descrip-
tions of Einstein’s theory of relativity. Is this expression
strictly correct? For example, does it accurately account
for the kinetic energy of a moving mass?

13. Give a physical argument that shows that it is impossible
to accelerate an object m to the speed of light, even with
a continuous force acting on it.

PROBLEMS
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14. Some distant star-like objects, called quasars, are reced-
ing from us at half the speed of light (or greater). What
is the speed of the light we receive from these quasars?

15. List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

1, 2, 3 = straightforward, intermediate, challenging [ = full solution available in Study Guide/Student Solutions Manual E = Core Concepts Workbook
WEB = solution posted at http://www.harcourtcollege.com/physics/cptech = biomedical application E = Interactive Physics

Review Problem

If 3.00 moles of a monatomic ideal gas are heated at
constant volume so that the temperature of the gas rises
900°F, how much does the mass of the gas increase?

Section 26.4 The Michelson - Morley Experiment

1. Two airplanes fly paths I and II, specified in Figure
26.5a. Both planes have air speeds of 100 m/s and fly a
distance L = 200 km. The wind blows at 20.0 m/s in the
direction shown in the figure. Find (a) the time of flight
to each city, (b) the time to return, and (c) the differ-
ence in total flight times.

2. In one version of the Michelson—Morley experiment,
the lengths L in Figure 26.6 were 28 m. Take v to be
3.0 X 10* m/s and find (a) the time difference caused
by rotation of the interferometer and (b) the expected
fringe shift, assuming that the light used has a wave-
length of 550 nm.

Section 26.6 Consequences of Special Relativity

@ A deep-space probe moves away from Earth with a speed
of 0.80c. An antenna on the probe requires 3.0 s probe
time to rotate through 1.0 rev. How much time is re-
quired for 1.0 rev according to an observer on Earth?

4. An astronaut at rest on Earth has a heartbeat rate of
70 beats/min. When the astronaut is traveling in a
spaceship at 0.90¢, what will this rate be as measured by
(a) an observer also in the ship and (b) an observer at
rest on the Earth?

5. The average lifetime of a pi meson in its own frame of
reference (i.e., the proper lifetime) is 2.6 X 1078 s. If
the meson moves with a speed of 0.98¢, what is (a) its
mean lifetime as measured by an observer on Earth and
(b) the average distance it travels before decaying as
measured by an observer on Earth? (c) What distance
would it travel if time dilation did not occur?

6. If astronauts could travel at v = 0.950¢, we on Earth
would say it takes (4.20/0.950) = 4.42 years to reach Al-
pha Centauri, 4.20 lightyears away. The astronauts dis-

agree. (a) How much time passes on the astronaut’s
clocks? (b) What is the distance to Alpha Centauri as
measured by the astronauts?

wes |7.| A muon formed high in the Earth’s atmosphere travels

at speed v = 0.99¢ for a distance of 4.6 km before it de-
cays into an electron, a neutrino, and an antineutrino
(u~— ¢ + v+ v). (a) How long does the muon live, as
measured in its reference frame? (b) How far does the
muon travel, as measured in its frame?

8. A friend in a spaceship travels past you at a high speed.
He tells you that his ship is 20 m long and that the iden-
tical ship you are sitting in is 19 m long. According to
your observations, (a) how long is your ship, (b) how
long is his ship, and (c) what is the speed of your
friend’s ship?

9. A box is cubical with sides of proper lengths L, = L, =
Ly = 2.0 m, as shown in Figure P26.9, when viewed in its
own rest frame. If this block moves parallel to one of its
edges with a speed of 0.80¢ past an observer, (a) what
shape does it appear to have to this observer, and (b)
what is the length of each side as measured by this ob-
server?

4 ;(li"
Tote '}
1;2 ‘.
.I’J
L
Figure P26.9

10. With what speed must a clock move in order to run at a
rate that is one half the rate of a clock at rest?
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The proper length of one spaceship is three times that
of another. The two spaceships are traveling in the same
direction and, while both are passing overhead, an
Earth observer measures the two spaceships to have the
same length. If the slower spaceship is moving with a
speed of 0.35¢, determine the speed of the faster space-
ship.

A supertrain of proper length 100 m travels at a speed
of 0.95¢ as it passes through a tunnel having proper
length 50 m. As seen by a trackside observer, is the train
ever completely within the tunnel? If so, by how much?

An observer, moving at a speed of 0.995¢ relative to a

14.

rod (Fig. P26.13), measures its length to be 2.00 m and
sees its length to be oriented at 30.0° with respect to the
direction of motion. (a) What is the proper length of the
rod? (b) What is the orientation angle in a reference
frame moving with the rod?

2.00m =

o

e \1 30.0°

’ Motion of observer

Figure P26.13 View of rod as seen by an
observer moving to the right.

Observer A measures the length of two rods, one sta-
tionary, the other moving with a speed of 0.955¢. She
finds that the rods have the same length, L,. A second
observer B travels along with the moving rod. What is
the ratio of the length of A’s rod to the length of B’s
rod according to observer B?

Section 26.7 Relativistic Momentum
An electron has a speed v = 0.90c. At what speed will a

16.

17.

18.

proton have a momentum equal to that of the electron?
Calculate the momentum of an electron moving with a
speed of (a) 0.010¢, (b) 0.50¢, (c) 0.90c.

Show that the speed of an object having momentum p
and mass m is given by

¢
V14 (me/p)?

An unstable particle at rest breaks up into two fragments
of unequal mass. The mass of the lighter fragment is

2.50 X 1072 kg, and that of the heavier fragment is

1.67 X 10727 kg. If the lighter fragment has a speed of
0.893¢ after the breakup, what is the speed of the heav-
ier fragment?

Uy =

Problems

WEB The nonrelativistic expression for the momentum of a

particle, p = my, can be used if v < ¢. For what speed
does the use of this formula give an error in the mo-
mentum of (a) 1.00% and (b) 10.0%?

Section 26.8 Relativistic Addition of Velocities

20.

21.

22.

An electron moves to the right with a speed of 0.90crel-
ative to the laboratory frame. A proton moves to the left
with a speed of 0.70¢relative to the electron. Find the
speed of the proton relative to the laboratory frame.
Spaceship R is moving to the right at a speed of 0.70¢
with respect to the Earth. A second spaceship, L, moves
to the left at the same speed with respect to the Earth.
What is the speed of L with respect to R?

A space vehicle is moving at a speed of 0.75¢ with re-
spect to an external observer. An atomic particle is pro-
jected at 0.90c¢in the same direction as the spaceship’s
velocity with respect to an observer inside the vehicle.
What is the speed of the projectile as seen by the exter-
nal observer?

A rocket moves with a velocity of 0.92¢ to the right with

24.

25.

respect 10 a stationary observer A. An observer B moving
relative to observer A finds that the rocket is moving
with a velocity of 0.95¢ to the left. What is the velocity of
observer B relative to observer A? (Hint: Consider ob-
server B’s velocity in the frame of reference of the
rocket.)

A pulsar is a stellar object that emits light in short
bursts. Suppose a pulsar with a speed of 0.950¢ ap-
proaches the Earth, and a rocket with a speed of 0.995¢
heads toward the pulsar (both speeds measured in the
Earth’s frame of reference). If the pulsar emits 10.0
pulses per second in its own frame of reference, at what
rate are the pulses emitted in the rocket’s frame of ref-
erence?

Spaceship I, which contains students taking a physics
exam, approaches Earth with a speed of 0.60¢, while
spaceship II, which contains instructors proctoring the
exam, moves away from Earth at 0.28¢ as in Figure
P26.25. If the instructors in spaceship II stop the exam
after 50 min have passed on their clock, how long does
the exam last as measured by (a) the students? (b) an ob-
server on Earth?

i =

> e
—e —l
0.60¢ 0.28¢

Figure P26.25
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Section 26.9 Relativistic Energy
26. A proton moves with a speed of 0.950¢. Calculate its

27,

28.

(a) rest energy, (b) total energy, and (c) kinetic energy.
A mass of 0.50 kg is converted completely into energy of
other forms. (a) How much energy of other forms is pro-
duced and (b) how long will this much energy keep a
100-W lightbulb burning?

The Sun radiates approximately 4.0 X 10% J of energy
into space each second. (a) How much mass is converted
into energy of other forms each second? (b) If the mass
of the Sun is 2.0 X 1030 kg, how long can the Sun sur-
vive if the energy transformation continues at the
present rater

What is the speed of a particle whose kinetic energy is

30.

31.

32,

equal to its own rest energy?

A proton in a high-energy accelerator is given a kinetic
energy of 50.0 GeV. Determine (a) the momentum and
(b) the speed of the proton.

In a color television tube, electrons are accelerated
through a potential difference of 20 000 volts. With
what speed do the electrons strike the screen?

What speed must a particle attain before its kinetic en-
ergy is double the value predicted by the nonrelativistic
expression KE = my2?

WEBAn unstable particle with a mass equal to 3.34 X 10~%" kg

34.

is initially at rest. The particle decays into two fragments
that fly off with velocities of 0.987¢ and —0.868¢. Find
the masses of the fragments. (Hint: Conserve both mass-
energy and momentum.)

If it takes 3750 MeV of work to accelerate a proton from
rest to a speed of v, determine v.

ADDITIONAL PROBLEMS

35.

36.

Determine the energy required to accelerate an elec-
tron from (a) 0.500¢ to 0.750¢ and (b) 0.900¢ to 0.990¢.
How fast must a meter stick be moving if its length is ob-
served to shrink to 0.500 m?

What is the speed of a proton that has been accelerated

38.

39,

40.

41.

42,

from rest through a difference of potential of (a) 500 V
and (b) 5.00 X 108 V?

An electron has a total energy equal to five times its rest
energy. (a) What is its momentum? (b) Repeat for a
proton.

What is the momentum (in units of MeV/¢) of an elec-
tron with a kinetic energy of 1.00 MeV?

An alarm clock is set to sound in 10 h, At ¢ = 0 the
clock is placed in a spaceship moving with a speed of
0.75¢ (relative to the Earth). What distance, as deter-
mined by an Earth observer, does the spaceship travel
before the alarm clock sounds?

At what speed must an electron move for its energy to
equal a proton’s rest energy?

A radioactive nucleus moves with a speed of v relative to
a laboratory observer. The nucleus emits an electron in
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the positive x direction with a speed of 0.70¢ relative to
the decaying nucleus and a speed of 0.85¢in the + x di-
rection relative to the laboratory observer. What is the
value of v?

A certain quasar recedes from the Earth at v = 0.870¢. A

44.

45.

Jjet of material ejected from the quasar back toward the
Earth moves at 0.550¢ relative to the quasar. Find the
speed of the ejected material relative to the Earth.

A spaceship of proper length 300 m takes 0.75 us to
pass an Earth observer. Determine the speed of this
spaceship as measured by the Earth observer.

Find the kinetic energy of a 78.0-kg spacecraft launched
out of the Solar System with speed 106 km/s by using
(a) the classical equation KE = %mzﬁ and (b) the relativis-
tic equation.

A physics professor on Earth gives an exam to her stu-

47,

48.

49,

dents who are on a rocketship traveling at speed of v
with respect to Earth. The moment the ship passes the
professor, she signals the start of the exam. If she wishes
her students to have T (rocket time) to complete the
exam, show that she should wait a time of

1—-v/c

=1 \V 1+ uv/c
(Earth time) before sending a light signal telling them
to stop. (Hint: Remember that it takes some time for the
second light signal to travel from the professor to the
students.)
Imagine that the entire Sun collapses to a sphere of ra-
dius R, such that the work required to remove a small
mass m from the surface would be equal to its rest en-
ergy mc. This radius is called the gravitational radius for
the Sun. Find R,. (Itis believed that the ultimate fate of
many stars is to collapse to their gravitational radii or
smaller.)
Arrod of length L, moves with a speed of v along the
horizontal direction. The rod makes an angle of 6, with
respect to the axis of a coordinate system moving with
the rod. (a) Show that the length of the rod as measured
by a stationary observer is given by

o2 1/2
L= Lo[l - (E) cos? 00]

(b) Show that the angle the rod makes with the axis as
seen by the stationary observer is given by the expres-
sion tan 6 = vy tan 6;. These results show that the rod is
both contracted and rotated. (Take the lower end of the
rod to be at the origin of the moving coordinate sys-
tem.)

Ted and Mary are playing a game of catch in frame S,
which is moving with a speed of 0.60¢; Jim in frame § is
watching (Fig. P26.49). Ted throws the ball to Mary with
a speed of 0.80¢ (according to Ted) and their separation
(measured in 8') is 1.80 X 10'? m. (a) According to
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Mary, how fast is the ball moving? (b) According to
Mary, how long will it take the ball to reach her? (c) Ac-
cording to Jim, how far apart are Ted and Mary, and
how fast is the ball moving?

S

v=10.60¢ s ’

A——1.80x10 m —~
// //
5 L7 0.80¢ P
i . - s
' /// ——— ..‘.. ///
s o
s 4 ) »
# 2 w —d—d > X
P Mary g Ted
5 - X
Jim
Figure P26.49

WEB (a) Show that a potential difference of 1.02 X 108V
would be sufficient to give an electron a speed equal to
twice the speed of light if Newtonian mechanics re-
mained valid at high speeds. (b) What speed would an
electron actually acquire in falling through a potential
difference of 1.02 X 106 V?

51. Consider two inertial reference frames, S and S', where
S’ is moving to the right with constant speed 0.60c¢ as
measured by observers in S. Jennifer is located
1.80 X 10! m to the right of the origin of S and is fixed
in S (as measured by observers in S), and Matt is fixed

S,

52.

Problems

in 8 at the origin in ' (as measured by observers in S').
At the instant their origins coincide, Matt throws a ball
toward Jennifer at constant speed 0.80¢ as measured by
Matt (Fig. P26.51). (a) What is the speed of the ball as
measured by Jennifer? How long before Jennifer catches
the ball, as measured by (b) Jennifer, (c) the ball, and
(d) Matt?

s s &
—
AP o— o
Q@ Bal Ball B
7] i{ X, X
=
Matt Jennifer Matt Jennifer

Matt throws the ball Jennifer catches the ball

(a) (b)

Figure P26.51

The muon is an unstable particle that spontaneously de-
cays into an electron and two neutrinos. If the number
of muons at £ = 0 is N, the number at time ¢ is given by
N = N,e"V" where 7is the mean lifetime, equal to

2.2 us. Suppose that the muons move at a speed of 0.95¢
and that there are 5.0 X 10* muons at ¢ = 0. (a) What is
the observed lifetime of the muons? (b) How many mu-
ons remain after traveling a distance of 3.0 km?




