Problem P3:

In class we showed that the motion x(t) for an arbitrary force F(t) applied to a damped harmonic oscillator can be found be evaluating the integral

$$x(t) = \frac{1}{m\omega_1} \int_{-\infty}^{t} F(t') \sin \omega_1(t - t') e^{-\beta(t - t')} dt'.$$

- a) Find x(t) for a step force, F(t) = 0 for t < 0 and $F(t) = F_0$ for t > 0.
- b) Find x in the limit $t \to \infty$ and explain why the result is what you would expect.