The Formal Rules of Quantum Mechanics

THE WAVE FUNCTION

e POSTULATE 1: The quantum state of a particle, or system of particles, can be described

by means of a wave function, V. The wave function carries all the information that can

be known about the system.

— In general, ¥ will be complex.

e POSTULATE 2: The time dependence of ¥ is governed by the Schrodinger wave equation

P
HU = ih 2w
e

where H = T'+V is the energy operator.

— Since the wave equation is linear, the superposition principle holds. If ¥y, Uy, U3, etc.

are physically acceptable wave functions, then

U= Zaan”
n

is also physically acceptable, and thus represents a possible quantum state of the system.

— Solutions to the wave equation can be found by solving the energy eigenvalue equation
H ¢n = En¢n
If 9, satisfies this equation then
U = wne—iEnt/h

solves the wave equation. More generally we can construct solutions of the form

U= Zanwne_iE"t/h.
n

e POSTULATE 3: Quantum mechanics is a theory of probabilities. Measurements carried

out in identical systems described by the same wave function ¥ do not necessarily yield

identical results.

— Nature only allows us to know the probability of various outcomes.

— The probability distribution for measurements of position is

P(7,t) = U* (7, 1) T(F, t).



OPERATORS

e POSTULATE 4: Associated with each measurable quantity, ¢, there is an operator Q.

The operators corresponding to physical observables must be linear and Hermitian. The

expectation value of ¢ is given by
+00

(@) = (T|QIT) = / U (2,1) Q U(x, 1) da,

—00

assuming that (¥|U) = 1.

— An operator is linear if it satisfies Q[¥1 + ¥3] = QU1 + Q¥ and Q a¥ = a QY for all
v,

— An operator is Hermitian if its expectation value is real for all physically acceptable

wave functions.

e THEOREM: If @ is Hermitian then (¥1|QWs) = (QW¥1|¥s) for all physically acceptable

wave functions, V1 and Vs.

EIGENFUNCTIONS AND EIGENVALUES

For any given operator () it may be possible to find a set of functions 1), for which

Qtn = qnPn
where ¢, is a number. If this is the case we say 9, is an eigenfunction of ) with eigenvalue
dn-
e THEOREM: The eigenvalues of a Hermitian operator are real, provided that we accept

only physically meaningful eigenfunctions.

— Proof: The expectation value of @ in the state ¥, is (q) = (Vn|Q|¥n) = (Vn|QVr) =
(Vnlagn¥n) = @n{t¥n|tn) = qn. But the expectation value is always real for Hermitian

operators, so g, must be real.

e POSTULATE 5: The outcome of any individual measurement of ¢ is always one of the

eigenvalues of ().



e THEOREM: If the wave function of a system at time ¢ is one of the eigenfunctions of ()

then a measurement of ¢ at that time gives the result ¢ = ¢, with probability 1.

— Proof: As shown above, the expectation value of ¢ in state v, is ¢,. To show that the
measurement always yields the mean value we calculate the the uncertainty in ¢q. The
mean-square deviation from the average is given by ((¢—(¢))%) = ((¢g—qn)?) = (¢%) — 2.
But (¢*) = (¥n|Q|¢n) = (¥ulQ*¥n) = ($n|Qanton) = (¥n|azQn) = (Yulatn) = ¢

So 04 = 0, which means that the measurement of g always yields the mean value g,.

e THEOREM: Eigenfunctions of any Hermitian operator corresponding to different eigenval-

ues are orthogonal.

— Proof: We have Qv,, = gn¥,, and Qv = gm¥m with g, # ¢p,. To prove the theorem we
focus on the quantity (¢, |Q|[1m). By the usual rules we have (1, |Q|1m) = (¥n|Qvm) =
(Vn|@m®¥m) = @m(P¥n|thm). But since @ is Hermitian we can also write (1, |Q|m) =
(QUn|Ym) = (Gn¥n|m) = @n{tn|tbm), where in the last step we used the fact that ¢y,
is real. Comparing the two results, we have @ (¥n|tm) = @n{¥n|tVm) or equivalently

(@m — qn) (Y¥n|¥m) = 0. But g, # ¢m, and so we conclude that (¢p|1p) = 0.

DEGENERATE EIGENFUNCTIONS

This last theorem raises the question of whether we can draw any conclusions about orthog-
onality in situations where we have two or more eigenfunctions with the same eigenvalue.
Suppose we have two eigenfunctions, 11 and 12 with eigenvalue ¢g. If we construct the func-
tion Y3 = c191+c219 and operate on this function with @), we see immediately that 13 is also
an eigenfunction of @) with the same eigenvalue: Qi3 = Qlc19 + cath2] = c1Q¥1 + c2Qv9 =
c1q¥1 + c2qipa = qle1yr + catha] = qips. Of course, we do not consider 13 to be a separate
eigenfunction since it is simply a linear combination of the first two. When counting the
number of degenerate eigenfunctions, we will count 1,41 as a separate eigenfunction only

if it is linearly independent of ¢, ¥y . . . ¥y,

e THEOREM: Given a set of n linearly independent, degenerate eigenfunctions, {1y}, it is
possible to construct a new set of n eigenfunctions, {lBk}, which are both linearly indepen-

dent and mutually orthogonal.
— Proof: The proof is by construction.

Step 1: Choose Qﬁl = N1yy1 where Nj is chosen to give (1/;1|1ﬁ1) =1.



Step 2 : Take 1/32 = Ny [t — ($1|¢2) 1/;1 |, and as before choose N3 to give (7,@2|1/;2> =1.
It is then easily shown that ¢); and s are orthogonal: (11 [te) = Ny [ (b1 |ths) —
(h1lpa) (Prlad1) ] = No [ (i lha) — (hl9p2) - 1] = 0.

Step 3 : Take 1)5 = Nj [3 — (1ﬁ1|¢3) 1 — (¢2|¢3> 7,32] Once again it is easy to show
that 13 is orthogonal to both 1 and 19. For example, (1&1 |’$3> = N3 [(1&1 l1hg) —
(Drliba) (1lr) — (2lds) (Prldha) ] = N3 [(h1[h3) — (bi[ps) - 1= (halgha) -0] = 0

To complete the construction of the set {@Bk} we simply continue in the same

manner, defining
k-1

P = Ni [k — > (jlve) ¥;].

j=1
Since our original functions are linearly independent, it is clear that lBk will
never be zero. Furthermore, it is clear from the construction that each @k will
be orthogonal to all the ﬁj with j < k. Thus we have achieved the goal of
constructing a set of functions {&k} with the property (’gﬁzhﬁ]) = 0jj-

By virtue of this theorem, we are now free to assume that all the eigenfunctions of any
Hermitian operator, whether degenerate or not, are mutually orthogonal. We simply agree
that our “basis” eigenfunctions will always be chosen in such a way that (1;|1j) = &;; for

all 7, 5.
EXPANSION OF ¥ IN TERMS OF BASIS FUNCTIONS

When we work with ordinary vectors we often find that it is useful to introduce vector

components and write

A=Agi+Ayg+A,2
where the “basis vectors” employed in the expansion, , 4 and Z in this example, are normal-
ized and mutually orthogonal. The same general concept is useful in quantum mechanics.

In this case, we often find that it is useful to expand the wave function of the system, ¥, in

terms of a set of “basis functions” {y,}:

U = Zanwn.

If the basis set we have chosen is sufficiently complete, expansions of this form may be
possible for all physically reasonable wave functions, and if this condition is met we say that

the basis functions “span the space”, or that they constitute a “complete set of functions”.



The math involved in expansions of this kind is greatly simplified if the basis functions
we select are normalized and mutually orthogonal — i.e. if (¢;|¢;) = ;5. In particular, if
we assume that the expansion exists, then the expansion coefficients are easily found as

follows: (Yr|¥) = (Yr| D, anthn) = >, @n{¥k|¥n) = > ,, andkn = ag. So the conclusion is
that ar = (Y5 ¥).

Suppose we use as our basis functions the eigenfunctions of some operator (), so that
Qvn = qnipn. The expectation value of ¢ in the state U is then given by (q) = (V|Q|¥) =
(2on an¥n|Q| X, am¥m) = Zn,m anam(n|QlYm) = Zn,m anam(Un|qmbm) =
En,m anAmGmOnm = Y, |an|2g,. Since we have postulated that the g,’s are the only pos-
sible outcomes of any individual measurement of g, we are led to interpret \an|2 as the
probability of obtaining the result g,. Thus we have P, = |a,|? = (¢, ¥) |2

What we have learned in the preceding paragraphs is that we can predict the probability
distribution for measurements of ¢ provided that the wave function of the system can be
expanded in terms of the eigenfunctions of the associated operator. This raises the question
of whether eigenfunction expansions are possible in all situations, or in other words, whether
the eigenfunctions span the space. The question is obviously important the probability
distribution is directly measurable and since quantum theory is supposed to describe what

we observe in nature. This leads us to the following:

POSTULATE 6: The eigenfunctions of the operator () corresponding to any measurable

quantity constitute a complete set of functions.

SUMMARY: Let’s now summarize what we have learned about the issue of how to predict

the outcome of measurements:

1) The expectation value of any measurable quantity ¢ for a system in quantum state ¥ is
given by (¢) = (¥|Q|¥). Remember that the expectation value represents the average

of a large number of measurements carried out on identical systems.

2) The outcome of any individual measurement of ¢ will always be one of the eigenvalues
of Q.

3) The probability of obtaining the result g, is found by expanding the wave function ¥ in
terms of the eigenfunctions of (). Postulate 6 asserts that this will always be possible.
The result is that P, = [{¢,|¥)|?, where 1, is the eigenfunction corresponding to

eigenvalue g,.



CONTINUOUS EIGENFUNCTIONS

The above formulas need to be modified somewhat when the eigenvalues of () are continuous
rather than discrete. In this case we write the eigenvalue equation in the form Qv, = at),,
and assume that valid solutions exist for all a’s within a certain range. For Hermitian
operators it is still true that the eigenvalues must be real, and also that eigenfunctions with
different eigenvalues are orthogonal: (4|9} = 0 if a # o’. The change for continuous
eigenvalues is that (¢4 |%,) is no longer 1. Instead we want
(Ya|tbar) = 0(a=a'),

where §(z—z) is the “Dirac delta function”. This function is defined as follows: 0(z—xp) = 0
for z#x¢ and 6(z—x0) = oo for =0, subject to the condition [ é(x—x¢)dz =1 whenever
the range of integration includes xzy. One of the important properties of the delta function

iS 400
/ £ (@) 8(z—20) dz = f(xo).

The rule for the expansion of the wave function in terms of the eigenfunctions is now

¥(a) = [ C(@) Ya(o) do.
where the integral extends over the full range of eigenvalues. Assuming (on the basis of Pos-

tulate 6) that the expansion exists for all physically allowable ¥ we can easily demonstrate

that the expansion function C' is given by

+oo
C(a) = (] T) = / () U (2) de.

Finally, the probability formula P, = |a,|? is modified as well, with |C(«)|? da now inter-

preted as the probability that a measurement of ¢ would result in a value in the interval
do.

MOMENTUM SPACE AND COORDINATE SPACE

The results summarized above can be applied directly to measurements of the momentum.
We take the momentum eigenfunctions to be
_ 1 _ipx/h
Yp(z) = ok © :

The normalization constant in this definition is chosen to give (p|1y) = d(p—p'), a result



that follows easily from the Fourier transform theorem. Application of the above formulas
with the substitution C(a) — ®(p) then leads to the familiar relationships between the

momentum space and coordinate space wave functions:
U(r) = / S(p)vp(x)dp ©  D(p) = / 05 (2) U () da.

When we work with the momentum space wave functions, we are really just using mathe-
matics that allows us to expand of the state vector ¥ in terms of the eigenfunctions of the
momentum, with ®(p) = (¢,|¥) = (p|¥). We should notice that the momentum space wave
function carries all the information about ¥ [since we can reconstruct ¥(z) given ®(p)], and
also that the main usefulness of the momentum expansion is that it gives us the momentum
distribution P(p)dp = |®(p)|> dp. By analogy we may conclude that the coordinate space
wave function, ¥(z), is really also just an expansion of the state vector, in this case in terms
of the eigenfunctions of the “position operator”, ¥(z) = (z|¥). As with all eigenfunction
expansions, the expansion function [¥(z) in this case| carries all information, and the most

readily accessible information is the position distribution P(z)dz = |¥(z)|? dz.



