HOMEWORK SET 10

Due Wednesday December 3

- 53) The energy eigenfunctions for the three-dimensional harmonic oscillator can be written in the form $\psi_{k,l,m}(x,y,z)$. The quantum numbers k,l and m take on integer values, $0,1,2,\ldots$, and the energy of the state is given by $E=(n+\frac{3}{2})\hbar\omega$ where n=k+l+m. Find the number of degenerate states for each energy, E_n .
- 54) (a) Use the rule $[p, x] = \frac{\hbar}{i}$ and the identity from part (c) of Problem 51 to show that $[p, x^n] = n(\frac{\hbar}{i})x^{n-1}$. Use proof by induction to find the result for arbitrary n. Work the problem using only general commutation relations -i.e. without ever writing $p = \frac{\hbar}{i} \frac{d}{dx}$.
 - (b) Show similarly that $[p^n, x] = n(\frac{\hbar}{i})p^{n-1}$.
- 55) (a) Use the formula

$$\frac{d}{dt}\langle q \rangle = \frac{1}{i\hbar} \langle [Q, H] \rangle + \langle \frac{\partial Q}{\partial t} \rangle$$

to find expressions for $\frac{d}{dt}\langle x\rangle$ in terms of $\langle p\rangle$ for the harmonic oscillator problem, $H=\frac{p^2}{2m}+\frac{1}{2}kx^2$. The results from Problem 54 will be useful.

- (b) In the same way, find an expression for $\frac{d}{dt}\langle p \rangle$ in terms of $\langle x \rangle$ for the harmonic oscillator.
- (c) Use the results from (a) and (b) to derive a formula that relates $\frac{d^2}{dt^2}\langle x\rangle$ and $\langle x\rangle$. Start by taking the time derivative of the formula for $\frac{d}{dt}\langle x\rangle$ that you found in (a), and then use your result from (b) to eliminate p. Your result will be in the form of a differential equation for $\langle x\rangle$. Solve the differential equation to obtain the general solution for $\langle x\rangle$ as a function of time.
- 56) A particle of mass m is moving in a potential well $V(x) = Cx^n$ where n is an integer.
 - (a) Use your result from Problem 54 to work out the commutator [px, H]. You should get two terms, one proportional to T and one proportional to V.
 - (b) Use the result to prove the Virial Theorem, which states that for $V(x) = Cx^n$, the expectation values of V and T are related by $\langle T \rangle = \frac{n}{2} \langle V \rangle$ for all energy eigenstates. The trick is to realize that all expectation values are time independent for energy eigenstates, and so $\frac{d}{dt} \langle px \rangle = 0$.
 - (c) What does the Virial Theorem say about $\langle T \rangle$ and $\langle V \rangle$ for the harmonic oscillator problem?
 - (d) What does the Virial Theorem say about $\langle T \rangle$ and $\langle V \rangle$ for the hydrogen atom? (The theorem still holds if x is replaced by r.)
- 57) The quantities Y_l^m (or $|l, m\rangle$ in the notation of the text) are normalized simultaneous eigenfunctions of L^2 and L_z . If we stick to l=1, there are only three basis functions, $\psi_1=Y_1^1$, $\psi_2=Y_1^0$ and $\psi_3=Y_1^{-1}$.
 - (a) Using these basis states write the operators L_x , L_y and L_z in 3×3 matrix form. HINTS: Remember that the $Q_{ij} = \langle \psi_i | Q | \psi_j \rangle$. Look at equations (7-20), (7-23) and (7-24), and remember that the eigenfunctions are orthogonal (since they have different L_z eigenvalues). Finally, notice that L_x and L_y are linear combinations of L_+ and L_-
 - (b) Show that your matrix operators satisfy the standard angular momentum commutation relations given in equations (7-6).