HOMEWORK SET 11

Due Friday December 12

58) This is a problem to work out and/or verify formulas for the components of \vec{L} in spherical coordinates. The operators are already known in rectangular coordinates, $L_x = \frac{\hbar}{i} (y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y})$, etc. To convert from rectangular to spherical coordinates use the chain rule; for example,

$$\frac{\partial \psi}{\partial x} = \frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial x} + \frac{\partial \psi}{\partial \phi} \frac{\partial \phi}{\partial x}.$$

(a) Work out the formula for L_z starting from the expressions $r = \sqrt{x^2 + y^2 + z^2}$, $\phi = \tan^{-1}(y/x)$ and $\theta = \tan^{-1}(z/\sqrt{x^2 + y^2})$. The final correct answer is

$$L_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}.$$

(b) The correct expressions for ${\cal L}_x$ and ${\cal L}_y$ in spherical coordinates are as follows:

$$L_x = \frac{\hbar}{i} \left[-\sin\phi \frac{\partial}{\partial \theta} - \cot\theta \, \cos\phi \frac{\partial}{\partial \phi} \right],$$

$$L_y = \frac{\hbar}{i} \left[\cos \phi \frac{\partial}{\partial \theta} - \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right].$$

Starting from $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, and $z = r \cos \theta$, convert the L_x formula back to rectangular coordinates and show that you get the expected result. You do not need to do anything for L_y .

59) Starting from the results of problem 58 show that the operator $L^2 = L_x^2 + L_y^2 + L_z^2$ is just

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right].$$

60) The $\ell=1$ spherical harmonics can easily be written in rectangular coordinates as well as in spherical coordinates. The results are

$$Y_1^1 = -\sqrt{\frac{3}{8\pi}} \frac{x+iy}{r}$$
 $Y_1^0 = \sqrt{\frac{3}{4\pi}} \frac{z}{r}$ $Y_1^{-1} = \sqrt{\frac{3}{8\pi}} \frac{x-iy}{r}$

- (a) By making a cyclic permutation of the indicees, predict the form of three functions which you think would be simultaneous eigenfunctions of L_x and L^2 . Check whether your prediction is correct by applying the L_x operator, in rectangular coordinate form, to each function.
- (b) An electron in hydrogen is known to have $L^2 = 2\hbar^2$ (meaning $\ell = 1$) and $L_z = \hbar$. Suppose we measure L_x of that electron. List the possible outcomes of this measurement and find the probability of each possible outcome.
- 61) Find the expectation value of r for the 2s and 2p states in hydrogen.
- 62) (a) Find the expectation values of the potential energy for the ground state of hydrogen. Express the results both numerically (in electron volts) and in terms of a formula.
 - (b) Find the expectation value of the kinetic energy for the ground state using the fact that $\langle E \rangle$
 - $\langle T \rangle + \langle V \rangle$ and that $\langle E \rangle = E_n$ (the energy eigenvalue).