HOMEWORK SET 5

Due Wednesday October 8

- 23) Gasiorowicz problem 2.2.
- 24) The dispersion relation for gravitational waves in water of depth h is

$$\omega^2 = gk(1 - e^{-2kh})/(1 + e^{-2kh}).$$

Calculate the phase and group velocities for deep water $(h >> \lambda)$ and shallow water $(h << \lambda)$. In which limit are the waves nondispersive?

- 25) Gasiorowicz problem 2.6.
- 26) Suppose that a particle of mass m has a wave function

$$\Psi(x,t) = Ae^{-\lambda|x|}e^{-i\omega t}.$$

- (a) Normalize Ψ .
- (b) Find the expectation values of x and x^2 .
- (c) Sketch a graph of $|\Psi|^2$ and mark the points $\langle x \rangle + \sigma$ and $\langle x \rangle \sigma$. Calculate the probability that the particle would be found outside this range.
- 27) (a) Find the probability current for a wave function of the form $\psi_1(x) = Ce^{\alpha x} + De^{-\alpha x}$ where C and D may in general be complex.
 - (b) Show that if we match a wave function of the form $\psi_2(x) = Ae^{ikx}$ to the function ψ_1 given above at some point x = a, the probability current will be the same on both sides of the matching point.
- 28) (a) Set up the matching equations for a particle of mass m and energy E incident from the left on a rectangular well

$$V(x) = \begin{cases} 0 & \text{for } x < 0 \\ -V_0 & \text{for } 0 < x < a \\ 0 & \text{for } x > a \end{cases}.$$

where

- (b) Solve the matching equations for the ratio of the amplitude of the transmitted wave to the amplitude of the incident wave, and then find the transmission probability.
- (c) If the incident particle is an electron of kinetic energy 5 eV and the potential is 3 eV deep, what is the minimum non-zero value of a for which there is perfect transmission (T = 1).