## HOMEWORK SET 6

## Due Monday November 3

- 29) In class we derived a formula for the probability of transmission through a rectangular barrier. Use the formula (or equivalently Eq. (4.35) from the text) to find the transmission probability for
  - (a) a 2 eV electron incident on a 3 eV high, 10 nm wide barrier;
  - (b) a 2 MeV  $\alpha$ -particle incident on a 3 MeV high, 10 fm wide barrier (use  $m_{\alpha} = 3730 \text{ MeV/c}^2$ ).
- 30) Gasiorowicz problem 4.8.
- 31) Consider a conventional square well potential

$$V(x) = \begin{cases} 0 & \text{for } -a < x < a \\ V_0 & \text{elsewhere} \end{cases}$$

with  $V_0 = 1 \,\text{eV}$  and  $a = 0.5 \,\text{nm}$ . The particle bound in the well is an electron. Find the energies of the two lowest states.

- 32) Determine the number of bound states of an electron in a square well potential with  $V_0=100\,\mathrm{eV}$  and  $a=0.5\,\mathrm{nm}$ .
- 33) A particle of mass m is confined in a potential

$$V(x) = \begin{cases} \infty & \text{for } x < 0 \\ -V_0 & \text{for } 0 < x < a \\ 0 & \text{for } x > a. \end{cases}$$

where  $V_0$  has the value  $32\hbar^2/ma^2$ .

- (a) How many bound states are there?
- (b) In the highest-energy bound state, what is the probability that the particle would be found outside the well (beyond x = a)?
- 34) Without doing any math, sketch, as carefully as you can, the wave functions for the ground state and first two excited states of the potential well

$$V(x) = \begin{cases} ax & \text{for } x > 0\\ \infty & \text{for } x < 0. \end{cases}$$