HOMEWORK SET 7

Due Wednesday November 5

35) Suppose we have a free particle of mass m described at t = 0 by a normalized time-dependent wave function

$$\Psi(x,t=0) = \left(\frac{1}{a\sqrt{\pi}}\right)^{\frac{1}{2}} e^{-x^2/2a^2} e^{ip_0x/\hbar}.$$

The corresponding normalized momentum-space wave function is then

$$\Phi(p,t) = \left(\frac{a}{\hbar\sqrt{\pi}}\right)^{\frac{1}{2}} e^{-a^2(p-p_0)^2/2\hbar^2} e^{-iEt/\hbar},$$

where $E = p^2/2m$.

- (a) Find $\langle x \rangle$ and $\langle p \rangle$ at t = 0 using the *coordinate*-space wave function and operators.
- (b) Using the momentum-space wave function and operators, find $\langle x \rangle$ and $\langle p \rangle$ for all t.
- 36) In this problem $\psi_0(x)$, $\psi_1(x)$ and $\psi_2(x)$ are the first three energy eigenfunctions for the harmonic oscillator.
 - (a) Using equations given in class, write out each wave functions in full detail including the normalization constant.
 - (b) Show by explicit calculation that $\psi_0(x)$ and $\psi_2(x)$ are orthogonal.
- 37) (a) Use the recursion formula

$$a_{m+2} = \frac{2m+1-\epsilon}{(m+1)(m+2)} a_m,$$

to generate the function $H_5(y)$. Fix the overall normalization by setting a_5 to the value $a_n = 2^n$.

(b) Show that you get the same result from the "generating function",

$$H_n(y) = (-1)^n e^{y^2} \frac{d^n}{dy^n} e^{-y^2}.$$

(c) Starting from $H_0 = 1$, find $H_5(y)$ by repeated application of the "recursion relation,"

$$H_{n+1}(y) = 2 y H_n(y) - 2 n H_{n-1}(y).$$

38) Find the expectation values of the kinetic energy $T = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$ and the potential energy $V = \frac{1}{2}kx^2$ for a particle in an arbitrary harmonic oscillator state ψ_n . Do the calculations using the formulas

$$x\psi_n = \frac{1}{\sqrt{2a}} \left[\sqrt{n+1} \psi_{n+1} + \sqrt{n} \, \psi_{n-1} \right] \quad \text{ and } \quad \frac{d}{dx} \psi_n = \sqrt{\frac{a}{2}} \left[-\sqrt{n+1} \psi_{n+1} + \sqrt{n} \, \psi_{n-1} \right]$$

and show that $\langle T \rangle + \langle V \rangle = E_n$.

39) A particle of mass m is confined in a harmonic oscillator well. Suppose that at time t=0 the particle is in a quantum state described by the "wave packet"

$$\Psi(x,t=0) = \sqrt{\frac{2}{3}} \left[\frac{a}{\pi} \right]^{\frac{1}{4}} \left[1 + \sqrt{ax} \right] e^{-ax^2/2}$$

where $a = (\sqrt{km}/\hbar)$.

- (a) Find the full time dependent wave function by expanding Ψ in terms of energy eigenfunctions ψ_0 and ψ_1 .
- (b) Find $\langle x \rangle$ as a function of time for this wave function.
- 40) In the H₂ molecule the potential energy between the two atoms can be approximated by

$$V(x) = A_0 \left[\left(\frac{a}{x} \right)^4 - \left(\frac{a}{x} \right)^2 \right]$$

where $A_0 = 20 \,\mathrm{eV}$ and $a = 0.05 \,\mathrm{nm}$.

- (a) Make a sketch of V(x).
- (b) Find the equilibrium separation x_0 .
- (c) For x close to x_0 we can write

$$V(x) = V_0 + \left[\frac{dV}{dx}\right]_{x_0} (x - x_0) + \frac{1}{2} \left[\frac{d^2V}{dx^2}\right]_{x_0} (x - x_0)^2 + \dots$$

and since the slope of V(x) is zero at the equilibrium point we can approximate V(x) by

$$V(x) \simeq V_0 + \frac{1}{2}k(x - x_0)^2$$
.

Use this approximation to predict the energy spacing (in eV) between the vibrational states of the molecule. For m use the reduced mass μ .