HOMEWORK SET 8

Due Wednesday November 12

41) In class we showed that in the harmonic oscillator

$$A\psi_n = \sqrt{n} \ \psi_{n-1}$$
 and $A^{\dagger} \psi_n = \sqrt{n+1} \ \psi_{n+1}$

where

$$A = \sqrt{\frac{a}{2}} x + \frac{i}{\sqrt{2a}} \frac{p}{\hbar}$$
 and $A^{\dagger} = \sqrt{\frac{a}{2}} x + \frac{i}{\sqrt{2a}} \frac{p}{\hbar}$

and where $a = \sqrt{km}/\hbar$. Use these results to derive the following useful formulas:

$$x \, \psi_n(x) = \frac{1}{\sqrt{2a}} \left[\sqrt{n} \, \psi_{n-1} + \sqrt{n+1} \, \psi_{n+1} \right]$$

and

$$\frac{d}{dx}\psi_n(x) = \sqrt{\frac{a}{2}} \left[\sqrt{n} \, \psi_{n-1} - \sqrt{n+1} \, \psi_{n+1} \right]$$

42) Determine whether the following operators are linear?

- (a) $Q_1\psi = x^2\psi$
- (b) $Q_2 \psi = x \frac{\partial}{\partial x} \psi$
- (c) $Q_3\psi = \psi^*$
- (d) $Q_4 \psi = \int_{-\infty}^{x} x' \psi(x') dx'$
- (e) $Q_5\psi = \ell n\psi$

43) A particle in a harmonic oscillator well is described at time t=0 by the wave function

$$\Psi(x,0) = N \left[(3+2i)\psi_0(x) - 3\psi_1(x) + 5i\psi_2(x) \right]$$

where the ψ 's are the energy eigenfunctions.

- (a) Find the normalization constant N.
- (b) Find the probability that a measurement of E would give: $\frac{1}{2}\hbar\omega$; $\frac{5}{2}\hbar\omega$.
- (c) Determine the expectation value of E.
- 44) For a particle in an infinite square well extending from 0 to L, the energy eigenfunctions are given by $\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi}{L} x$ with eigenvalues $E_n = n^2 \pi^2 \hbar^2 / 2mL^2$. Suppose we start a particle in the well with an initial (normalized) wave function

$$\Psi(x,0) = \begin{cases} -\frac{1}{\sqrt{L}} & \text{for } 0 < x < \frac{L}{2} \\ +\frac{1}{\sqrt{L}} & \text{for } \frac{L}{2} < x < L \end{cases}$$

Find the probability that a measurement of the energy would give: E_1 ; E_2 ; E_3 ; E_4 . [Hint: You can save a lot of time if you sketch the functions before trying to do any integrals.]

- 45) Show that if A and B are Hermitian, $(A+B)^2$ is also Hermitian. Assume that A and B do not commute.
- 46) Show that if A and B are Hermitian, i[A, B] is also Hermitian.