Each problem is worth  $33\frac{1}{3}$  points.

- 1) An electron is confined in a bound state of a finite square potential as shown in the drawing.
  - (a) Write down the general expressions for the wave function  $\psi(x)$  in the regions x < -a, -a < x < a and x > a. Eliminate terms that are disallowed for one reason or another.
  - (b) Given that H commutes with the parity operator  $[P\psi(x) = \psi(-x)]$ , explain in detail what you can conclude about the coefficients  $(A, B, C \ etc.)$  that appear in the wave functions you wrote down in part (a).



- (c) Using results from (b) that are applicable for the **second excited state**, match the wave functions at x = a and find the transcendental equation for the energy of the state.
- (d) How large must  $V_0$  be in order for the second excited state to actually be bound? Show work and/or explain your thinking. (You will get only minimal credit for "finding the right equation" on your formula card.)
- 2) This is a harmonic oscillator problem,  $H = p^2/2m + \frac{1}{2}kx^2$ .
  - (a) Work out the commutation relation [H,Q], where  $Q=x+ip/\sqrt{km}$ . You should be able to express the answer in terms of Q.
  - (b) Suppose  $\psi$  is an eigenstate of H with eigenvalue E. Show that  $Q\psi$  is also an eigenfunction of H. What is the eigenvalue in this case?
- 3) Consider a two-state system in which the energy operator can be written in the form

$$H=\left(egin{array}{cc} 0 & iA \ -iA & 0 \end{array}
ight),$$

where A is real.

- (a) Find the energy eigenvalues and the corresponding eigenvectors,  $\psi_1$  and  $\psi_2$ .
- (b) Normalize  $\psi_1$  and  $\psi_2$ .
- (c) Suppose the system starts out at t=0 in a state  $\psi=\begin{pmatrix}1\\0\end{pmatrix}$ . Expand  $\psi$  in terms of the eigenstates and find  $\psi(t)$ . If possible, simplify your result by looking for combinations that reduce to  $\cos \omega t$  and  $\sin \omega t$  where  $\omega=A/\hbar$ .