1) [20 points]

(a) Determine whether the components of the angular momentum $(L_x, L_y \text{ and } L_z)$ commute with x^2+y^2 .

(b) Suppose we have a particle moving under the influence of a potential V that depends only on $\rho = x^2 + y^2$. Which of the following quantities

$$L_x$$
 L_y L_z x y z p_x p_y p_z

will be constants of the motion? [All answers must include some sort of work or explanation.]

2) [10 points]

An operator is said to be Hermitian if $\langle \psi | Q\psi \rangle = \langle Q\psi | \psi \rangle$ for all "well behaved" (i.e. physically acceptable) wave functions ψ . Using this definition, show that $p_x = \frac{\hbar}{i} \frac{\partial}{\partial x}$ is Hermitian.

3) [20 points]

The wave functions for the hydrogen atom (taking Z=1) have the form

$$\psi(r, \theta, \phi) = R(r)Y_l^m(\theta, \phi)$$
 where $R(r) = N(\alpha r)^l \sum_k a_k (\alpha r)^k e^{-\alpha r}$

with the recursion formula

$$a_{k+1} = \frac{(k+l+1) - \sigma}{(k+1)(k+2l+2)} a_k$$

where

$$\alpha = \left[\frac{8\mu|E|}{\hbar^2}\right]^{\frac{1}{2}}$$
 and $\sigma = \left(\frac{e^2}{4\pi\epsilon_0}\right)\frac{1}{\hbar c}\left[\frac{\mu c^2}{2|E|}\right]^{\frac{1}{2}}$

(a) What must happen in order for ψ to remain finite in the limit $r \to \infty$.

(b) Show how the requirement that ψ be finite leads to energy quantization, and find the formula for the energy.

(c) For what values of l does one obtain eigenfunctions with energy $E = E_0/9$ where E_0 is the ground state energy? Explain.

(d) How many degenerate states are there for this energy? List the quantum numbers of each of these states.

4) [20 points]

The eigenfunctions of L^2 and L_z corresponding to l=1 are given by

$$Y_1^1 = -\sqrt{\frac{3}{8\pi}} \frac{x+iy}{r} \qquad \quad Y_1^0 = \sqrt{\frac{3}{4\pi}} \frac{z}{r} \qquad \quad Y_1^{-1} = \sqrt{\frac{3}{8\pi}} \frac{x-iy}{r}$$

If a particle with l=1 is known to have $L_x=+\hbar$, find the probabilities that subsequent measurements of L_z yield the values $L_z=+\hbar$, $L_z=0$, and $L_z=-\hbar$.

5) [15 points]

Find the expectation value of the potential energy for a hydrogen atom in the state

$$\psi_{2,1,0} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \frac{r}{a_0} e^{-r/2a_0} \cos \theta.$$

where $a_0 = (\hbar^2/\mu)(4\pi\epsilon_0/e^2)$. [The following integral will be useful: $\int_0^\infty x^n e^{-x} dx = n!$]