1) [20 points]

Consider an atom that has a number of core electrons (which we ignore) plus a single valence electron in an $l=1$ state. Neglecting the electron spin, there are three degenerate quantum states with wave functions $\phi(\vec{r})=R(r) Y_{1}^{m}(\theta, \phi)$. Find the resulting first-order energy shifts and the zero-order energy eigenfunctions if the atom is placed in a crystal where it is subject to a perturbation

$$
H^{\prime}=v(r) f(\theta) \cos 2 \phi
$$

Hints and other useful information: Remember that the matrix elements satisfy the rule $H_{j, i}^{\prime}=H_{i, j}^{\prime *}$. In this problem there is only one i, j combination that gives a non-zero matrix element. You can tell which one it is by thinking about the ϕ integral. It helps to write $\cos 2 \phi=\frac{1}{2}\left[e^{2 i \phi}+e^{-2 i \phi}\right]$. Since the r and θ dependences are not specified, use the symbol β to represent the non-zero matrix element, and then finish the problem finding the energy shifts in terms of β. The relevant spherical harmonic functions are $Y_{1}^{1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}, Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta$, and $Y_{1}^{-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}$.
2) $[10$ points $]$

The three-dimensional harmonic oscillator potential, $V=\frac{1}{2} k r^{2}$, is a central potential, and consequently the Schrodinger equation is readily solved in spherical coordinates $\left[\psi_{n, l, m}=R_{n, l}(r) Y_{l}^{m}(\theta, \phi)\right]$. The resulting energies are given by $E_{n, l}=\left(2 n+l-\frac{1}{2}\right) \hbar \omega$ where $n=1,2,3 \ldots$ and $l=0,1,2 \ldots$
(a) Suppose we put two non-interacting identical spin- $\frac{1}{2}$ fermions in the well. Find the ground state energy and the energy of the first excited state of the two-particle system.
(b) Find the number of degenerate quantum states for each of the two energy levels of part (a).
(c) Write down one possible wave function (including both the spin and space parts) for each of the two energy levels of part (a).
3) [20 points]

A system of two spin- $\frac{1}{2}$ particles is subject to a Hamiltonian

$$
H=a \vec{S}_{1} \cdot \vec{S}_{2}+b\left(S_{1, z}+S_{2, z}\right)
$$

Find the energy eigenfunctions (write them out in terms of $\chi_{1}^{ \pm}$and $\chi_{2}^{ \pm}$) and the corresponding energy eigenvalues. Hints: Think about which operators commute with H. Once you understand that, you should be able to simply write the eigenfunctions down from what you already know, and then with a little work you can get the eigenvalues as well. If you get stuck it might help to think about what we did for the $\vec{L} \cdot \vec{S}$ potential.

