QuantumM Stafistics

The applications of quantum theory are not limited to
extremely small systems such as isolated atoms or mole-
cules. You already know that the quantum theory is
valid for systems of large size as well as for small systems;
but you might not realize that, for very large scale behavior
of many systems, liquids or solids, the quantum theory
makes predictions which sometimes differ in startling
ways from those of classical theory.

At first glance, the task of constructing a quantum
theory for a solid or liquid might seem hopeless. If we
cannot even solve for the energy levels of a two-electron
atom without making approximations, what can we do
with a system containing 10*® particles? But we are
encouraged by the example of classical theory; although
the three-body problem of classical mechanics remains
unsolved in general, classical theory has been quite
successful in the use of statistical methods to predict the
average behavior of systems containing many particles.
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Classical statistical theory describes certain properties of gases quite succegg.
fully. We have seen (Chapter 1) that this theory involves the Boltzmann dis.
tribution function n(g), which is such that [ n(e) de is the average number of
particles with energy between ¢, and ¢, . But the Boltzmann distribution faj)g
when it is applied to liquids or solids. As we shall see, it cannot be used t,
predict such a simple thing as the specific heat of a solid.

The reason for this failure lies in the indistinguishability . of elementary
particles. In a gas, although the atomsareidentical, theyare usually far enough
apart so that they can be distinguished by their positions, and one could, i,
principle, ““follow” a single atom as it wends its way through a gas. But the
electrons in a solid or a liquid, even those belonging to different atoms, are
often so close together that their wavefunctions overlap. The uncertainty
principle thus prevents our defining their trajectories well enough to dis-
| tinguish one from another. Or to put it another way, the motion is described
by means of a single wavefunction for the system; this wavefunction can give
probabilities for finding an electron in a certain region, but it cannot say
which electron is found.

Except for the problem of indistinguishability, the classical derivation of
the Boltzmann distribution does not run afoul of any principle of quantum
theory. Let us therefore attempt to construct a distribution function which
will be similar to the Boltzmann function but which will take proper account
of the indistinguishability of particles. To see how we might do this, let us
first analyze an example system containing only four particles.

11.1 THE THREE KINDS OF STATISTICS: AN
EXAMPLE

Let us consider a system of four identical particles, and suppose that each
particle can possess energy only in integral multiples of a quantity E; that is,
the energy levels for each particle are & =0, &, = F, g3 =2E,.... (The
assumption that the possible energies are discrete is made only to simplify
the calculation, and has no quantum mechanical significance, because E can
be made as small as we wish. The quantum theory enters only in the treatment
of the fact that the particles are identical.)

For generality, we make the further assumption that there is more than
one state for each energy level; that is, we say that some energy levels are
degenerate. Again, the terminology sounds quantum mechanical, but it can
be applied to classical theory as well. We wish to allow for the fact that certain
energy levels are easier to populate than others; this is true classically as well
as quantum mechanically. (For example, consider the Maxwell velocity dis-
tribution, f(v) oc v2e™*/?*T, The probability that an individual molecule has
a speed between v and v + dv is proportional not only to the Boltzmann factor
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¢~™* /3T but also the factor »®, which is analogous to the degeneracy of a
' quantum-mechanical energy level.)

We shall use the symbol g, to denote the degeneracy of the sth level. In
our example we let g, =1, 9, =2, 93 =2, g4 =3, gs = 3, and g¢ = 4. The
_energy levels and their degeneracies are shown graphically in Fig. 1; the states
are depicted as boxes into which the particles are placed.

€ €2 €3 €4 € €¢

L,

Fig. 1. Graphic representation of states of a particle as
“boxes.” Heavy lines denote boundaries between different
energy levels; lighter lines show boundaries between
different states having the same energy. The dots indicate
the particles; in the case illustrated, one particle has
energy &, two have energy €, both occupying the same
state, and a fourth particle has energy €s.

The physical and chemical properties of the system are related to the
average distribution of the particles among the various energy levels. This
distribution, of course, depends on the temperature of the system, so let us
assign a temperature by setting the total energy of the system equal to 5E.
Before proceeding further we must pause to make sure that our definitions
_dre clear. We define a distribution to be the set of numbers n, of particles in
_each energy level e, and we define an arrangement as a definite way of putting
the particles into each of the states. (An arrangement is sometimes called a
microscopic distribution.) Thus there can be several arrangements which all
correspond to the same distribution. For example, with reference to Fig. 1,
if one of the two particles in the second box were moved over to the third
box (so that it still had energy &,, but occupied a different state), we would
have a different arrangement but the same distribution: ny = 1,n, = 2,n3 =0,
n;=1,ns=0, and ng =0.

Now in order to find an average distribution, we must take into account
all possible distributions, and combine them with the appropriate weight for
each one. We determine this weighting by assuming that each arrangement is
equally probable, because we have no reason to believe that one arrangement
should be more probable than any other arrangement. If each arrangement is
equally probable, the probability that a given distribution is present is pro-
portional to the number of different arrangements which correspond to that
distribution. By counting the number of particles in a given level for each
distribution, and then multiplying each number by the probability of occur-
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rence of that distribution, we can obtain the contribution of each individyg)
distribution to the average distribution. It is this average distribution whicp
is governed by the Boltzmann factor in the case of a gas.

At this point the indistinguishability of the particles enters the problem,
In counting up the number of arrangements, we count only those which are
distinct from one another. If the particles are indistinguishable, two arrange.
ments which differ only in the exchange of two particles would be counted ag
only one arrangement. Furthermore, some arrangements are not permittegd
at all, if the particles obey the Pauli exclusion principle. As we have seen,
electrons do obey this principle, as do all other particles of half-integer spin,
but particles with integer spin (such as photons or helium-4 nuclei) do not,
Thus there are two kinds of quantum statistics, depending on the kind of
particles involved ; particles which obey the exclusion principle are said to be
governed by Fermi-Dirac statistics, and other particles are governed by
Bose-Einstein statistics. ‘

Table 1
Possible Distributions of Four Particles

Distribution Arrangements Probability

My H2 Hiy H4a Ns HNe Boltz.* FD? BE° Boltz, FD BE

@ 3 0 0 0 0 1 16 0 4 16/464 . 0 4/39

® 2 1 0 0 1 0 7 0 6 72/464 O 6/39

© 2 0 1 1 0 0 72 0 6 72/464 O 639

@1 2 0 1 0 0 144 3 9 144/464 “3/5  9/39

€ 0 3 1 0 0 0 64 0o 8 64/464 O 839

® 1 1 2 0 0 0 96 2 6 96/464 2/5 6/39
464 5 39

“ Boltzmann,
b Fermi-Dirac.
€ Bose-Einstein,

Now we are ready to solve our example. Table 1 shows all of the possible
distributions which obey the given conditions, together with the number of
distinct arrangements for each distribution, according to each of the three
types of statistics, including Boltzmann. The probability of each distribution,
found by assuming each arrangement to be equally likely, is also shown in the
table.
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To understand this table, let us see how the first line was worked out. Energy
evel & has energy SE, which is the total energy of the four particles; therefore
placing one particle in that level forces the other particles to go into the zero
energy level. The degeneracy of level & is g6 = 4, so there are four possible
arrangements for Bose-Einstein (BE) statistics, corresponding to the four
different states which the particle in level & may occupy. But for Boltzmann
statistics, the particles are distinguishable, so a single BE arrangement be-
comes four Boltzmann arrangements, one for each possible particle in level
¢, thus there are 4 x 4 = 16 arrangements for Boltzmann statistics. Finally,
for Fermi-Dirac (FD) statistics, there are no arrangements, because the
exclusion principle prevents three particles from occupying the one state in
the zeroth level.

Line (d) illustrates the counting of arrangements for Fermi-Dirac statistics.
There is only one way to place the two particles into the two states with
energy &, ; one particle must go into each state, because both particles cannot
occupy the same state. There are three states available for the particle in level
&4, S0 this accounts for the presence of three possible arrangements. In con-
trast, there are 3 x 3 = 9 arrangements for this distribution in Bose-Einstein
statistics, because there are three ways to place the two particles into level
¢,; one in each state, two in the first state, or two in the second state.

The *probability” column in Table 1 is found simply by dividing the
number of arrangements for a given distribution by the total number of
arrangements. These probabilities may then be used to find the average dis-
tribution; we simply multiply the probability of each individual distribution
by each n in that distribution, and we add the results for a given s, to find the
n, for the average distribution. You can easily verify that the average dis-
tributions are those shown in Table 2. .

The total of all the values of #, is, of course, 4 for each distribution. It may
seem a bit strange that n, is greater than n; in each distribution, while the
_ values of n, otherwise decrease with increasing s. The reason, of course, lies
_in the degeneracy; g, is 2, whereas g, is only 1. It is useful to define the quan-
tity n /g, , called the occupation index, which is theaverage number of particles

Table 2 ,
Average Distributions Derived from Table 1

Ry na Ha Ha s He

Boltzmann:  576/464  648/464  328/464  216/464  72/464  16/464
Bose-Einstein: 51/39 54/39 26/39 15/39 6/39 4/39
Fermi-Dirac: 1 8/5 4/5 3/5 0 0
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per state in the sth level. The occupation index does decrease with increasing
s, or increasing energy, and we shall soon see that this index is independem
of g, for all kinds of statistics. It is the occupation index that is given by the
expression e~*/*T in Boltzmann statistics. In our example, the occupatiop
indices are as shown in Table 3.

. Table 3
Average Occupation Indices Derived from Table 1
nilg: nalg. n3lgs nalga nslgs Hslge
: Boltzmann 576/464 324464  164/464  T2/464 24464  4/d4e4
i Bose-Einstein 51/39 27/39 13/39 5/39 2/39 1/39
. Fermi-Dirac 1 4/5 2/5 1/5 0 0

The difference between the Boltzmann and the Bose-Einstein distributions
happens to be slight in this case, but the Fermi-Dirac distribution is sxgmﬁ
cantly different from either of the others.

This example should have been helpful in clarifying the manner of applica-
tion of the basic principles, so that you will be prepared for the more general
derivation which follows. Obviously, the distribution of four particles should
not be precisely described by the statistics of large numbers, but after we have
developed the form of the three general distribution laws, you 'may wish to
return to these example distributions to test their similarity to- the general
laws.

11.2 DERIVATION OF THE GENERAL FORM FOR EACH
DISTRIBUTION FUNCTION

We derive the general form for each of the three types of distribution by
counting arrangements of N particles with total energy E, much as we did in
the four-particle example. Obviously, when there are 10%® particles we cannot
actually enumerate the arrangements, so we must be more clever; we must
find a general formula for the number of arrangements in a given distribution.

Even then, there are an enormous number of distributions to consider in
computing the average distribution, but we have the advantage that it is
sufficient to find the most probable distribution rather than the average dis-
tribution. The most probable distribution, like any other specific distribution
of 10?3 particles, has a very small probability of occurrence. But all of the
distributions which actually occur differ from the most probable one by a
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gligible amount. We may understand this fact by considering the standard
deviation in the number of particles to be expected in any given energy level
set of levels. When there are of the order of 1022 particles, the number of
particles in the states in any measurably large energy range could easily be
of the order of 10'; the standard deviation in 10" is 10® (see Appendix A), a large
humber of ordinary standards, but only one partin 10%. In other words, most of the
sossible distributions differ from the most probable distribution by less than one part
in 108, for the number of particles in any particular energy range, and we are
ustified in computing the most probable distribution rather than the average
1sfribution.
~ We begin the computation by finding P;, the number of ways in which the
n, particles in the sth energy level may be put into the g, states in that level.
Then we find the fotal number of arrangements for the whole set of given
numbers ny,n,, ..., 0, ... by taking the product of all the numbers
Px, P,,...,P,,.... This product equals the statistical weight W, nys...s
n,,...) for the distribution ny, ..., ns.... That is,

W(nl;"-’ns"")=];[1Ps

As mentioned above, the total number W is proportional to the probability
of finding the distribution to be the set ny, 15, ..., n,, ... at any given time.
After finding an expression for W(ny, n,, ..., ng, ...), we shall find the set
of numbers which maximizes W, subject to the two conditions

(1) that the total number N of particles is fixed:

Yn=N )
_ (2) that the total energy E is fixed:
Y ne,=E 2)

Computation of Statistical Weights. The computation of P;and Wisshown
below for each of the three types of statistics.

_ Boltzmann. 1In this case only, we assume that the particles are dis-
tinguishable, so we are concerned with which particles we choose to put in
each state. Let us consider level 1 first. From the N particles available, we can
choose n,; particles for this level in N!/n {(N — n,)! different ways.! These

! There are N choices for the first particle, N — 1 for the second, etc., so there are
N(N—1DWN —2)...(N~— n; +1) ways to choose the n; particles in a given order. But we
have the same n, particles regardless of the order of choosing them, so we must divide the
above number by the number of possible orders of choice, which is #, !, Thus the number of
ways of choosing #; objects from N objects is Nl/n (N — ny)!l.
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particles may then be distributed among the g, states of level 1 in g, differeny
ways.> Thus there are a total of P, = Nlg "' /n, (N — ny)! ways to put n,
particles into Jevel 1.

Having placed n, particles into level 1, we have N — n, remaining particles;
we may choose n, of these for level 2 in (N — n)!/n, (N — ny — n,)! different
ways. These particles may be distributed among the g, states of level 2 in g,™ ways,
so there are a total of

__ (N—nlgy
2_nz!(N—nI—nz)!

ways to put #, particles into level 2, after one has put n, particles into leve] |,

By now it should be clear that, after one puts n, particles into level 1, n,
into level 2, n, into level 3, and so on, up to n,_, into level s — 1, there are
in general

_(N=ny—ny——n,_)lgk
T (N —n;—ny— - —n)!

ways to put n, particles into level s. The total number of ways to put N par-
ticles into the levels to produce a given distribution ny, n,, . .., n,. .., must be
the product P,P,.-- P ---. It is easy to see that the intermediate factors
(N —ny)!, (N — ny; — ny)!, etc. cancel in numerator and denominator, so the
final result is

W(nl,-.-,ns,...)=HPs

ns

w0
gs

= '
N-SI:I1 I !

©)

Bose-Einstein. In the quantum statistics, there is no factor analogous
to the factor N!/n,!(N —n)! which appears in the Boltzmann statistics,
because that factor involves a choice of particles for a given level; when the
particles are indistinguishable, this choice is irrelevant. Now we need only
know the factor analogous to g,"'—the factor which counts the. number of
ways in which the n, particles can go into the g, states of level 1. Again, since
the particles are indistinguishable, we do not count the choices for a given
particle; instead, we consider the whole set of particles at.once. We draw a
picture similar to Fig. 1, but we show only the states in level s (Fig. 2). There
are ng particles in the g, states. We obtain a different arrangement each time
we change the number of particles in one or more states, by moving particles

2 There are g, places for each of the n, particles, making g™ possibilities in all.



11.2 DERIVATION OF THE GENERAL FORM 387

Fig. 2. (@) One arrangement
of n; particles in the gs states of

o |sa0 ©o| o |ooe/ oo oon level s (gS=9)' (b) A second
@) arrangement of the same ns
v particles; this arrangement is
LXRETY] ee| o |essj00 |0se obtained from the arrangement
of (a) simply by interchanging
(b) the second particle and the first

partition.

from one state to another, but we obtain no new arrangement if we simply
exchange two particles. We can count the arrangements by a simple trick, as
ollows: There are g, — 1 partitions, or dividing lines, between the states,
so that the total number of particles plus partitions is #, + g, — 1. We can
obtain new arrangements by permuting particles and partitions; for example,
the arrangement of Fig. 2b was obtained from Fig. 2a by interchanging the
econd particle and the first partition (between states 1 and 2). There are
(n,+ g5 — 1)! possible permutations of particles and partitions. However,
many of these do not produce new arrangements; permutation of particles
among themselves, or of partitions among themselves, changes nothing
physically. The particles may be permuted in n,! ways, and the partitions in
(g; — 1)! ways. Thus there are n,!(g, — 1)! permutations of each arrangement,
and the total number of arrangements must be the quotient

o

p =t 1!
ns1(gs — D!
number of permutations .
~ number of permutations per arrangement

Therefore
W(nl’-“a Bs, "')=]__IPS

s=1

® (n,+g,—1)! |
=L G, - )

Fermi—Dirac. Here again we need only know how many arrangements
there are of the #, particles in the g, states of level s. But we count the arrange-
ments in a different way, because of the condition that there is no more than
_one particle in each state. Because of this condition, we can simply divide the
states into two groups—the n, occupied states and the g, — n; unoccupied
 states. We can choose 71, objects from a total of g, objects in g, !/n (g5 — ny)!
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different ways (see the footnotes under Boltzmann statistics), so this must be
the number of ways of choosing n, states to be occupied when there are g,
different states. (Remember that the states are distinguishable, even though the
particles are not.) Therefore

—s

W(nl"'-9ns5“')= Ps

1

1]

s

gs!
'(gs - ns)'

i
Il,_'__'|8

©)

Computatlon of n,. We now have the three expressions for W(n,, ...,
...), the statistical weight of a given distribution »ny, ..., ny, .... Ineach
case we can find the most probable distribution by ﬁndmg the set of numbers
n, which maximizes W. We do this by maximizing the logarithm of W rather
than W itself; this is equally effective and it simplifies the procedure by
changing each product to a sum.

To find the maximum, we simply set the variation in In W equal to zero as
the numbers », are varied, just as one finds the maximum of a function of a
single variable by setting the derivative equal to zero. Thus we wrxte that the
variation in In W is

8(ln W)=0 ©)

where 6(In W) is obtained by varying the numbers n, by amounts én, and then
finding the difference between the newly calculated value of W and the pre-
vious value of W. But we must remember that the variations dén, in the
numbers 7, are not arbitrary, because N and E are fixed [conditions (1) and
(2)]. Therefore

SN=Y on,=0 0
s=1 .

SE=Y ¢ on,=0 (8)
s5=1

Taking zero from zero leaves zero, so we may write, using Eqgs. (6), (7), and

8):
5(an)—oz§5ns—ﬁ§sséns=0 . )
s=1 s=1

where « and § can be any numbers we choose.> We shall see the reason for

3 This technique for maximizing a function of several variables while simultaneously
satisfying certain conditions on these variables is quite widely used. The undetermined
constants « and f3 are called Lagrange multipliers.
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his step in a moment. Let us now introduce the expressions for W for the
hre?‘types of statistics, and compute the occupation numbers #,.

baltzmann.
InW=InN!'+ ) (n,Ing,—Inng!)
s=1

We wish to consider situations in which #, is quite large, so we simplify this
xpression by using the Stirling approximation for n!, which for large n may
pe written*

Innl->nlnn—1) as n—-

We may then write
InW=InN!+) (n;Ing,—n;Inn, + ny)
s=1

 Now, using the fact that

© a(In W)
d(nwW)=) ———=9§
(In W) s; o Ons
 we obtain
d(In W)=Y (Ing,—Inn;— 1+ 1) dn, (10)
s=1

Substitution of Eq. (10) into Eq. (9) yields

00

Y (Ings—Inn,—o— Pe)dn,=0 (1

s=1

Bose-Einstein.

InW =) [In(n, + g, — D! = In ny! — In(g, — 1)!]
s=1

Again using the Stirling approximation, we find that

Sin W =Y [In(n, + g;) — In n,] on,
s=1 .

# There are more accurate forms of the Stirling approximation; see, for example,
I. Sokolnikoff and R. Redheffer, ‘‘ Mathematics of Physics and Modern Engineering.”
McGraw-Hill, New York, 1958. The expression given here is accurate to 1 percent at n = 100, and
all expressions approach the same limit as n goes to infinity.
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and substitution into Eq. (9) yields

sil[ln(ns + gs) —In g — 'a - ﬁgs] 5ns =0 (12)

Fermi-Dirac,
In W= i[m 6. —In n,! — In(g, — n)!]
so that the use of the Stirling approximation gives us
dln W= il[—ln ng + In(g, —~ ny] on,

and substitution into Eq. (9) yields

i [—Inng+In(g, — n) — o — Pe,] én,=0 (13
s=1

The problem now is to eliminate the quantities on, from the equations,
We can do this if the dn, are arbitrary and can be varied independently,
because in that case the coefficient of each dn, must be zero in Egs. (11), (12),
and (13). Actually, all but two of the dn, may be chosen arbitrarily, and the
remaining two are then determined by conditions (1) and (2). But now the
constants « and § come into play; we can choose these two constants so that
the coefficients of the two final dn, are zero. Then, since the other on, are all

arbitrary, the coefficients of these are also zero, and we have, for all values
of s,

Boltzmann
n
In= = —o — fe, =g b
gs s
Bose-FEinstein
n ng 1
In = g f —
hg + gs B g s e¢+ﬂss 1
Fermi-Dirac
n n 1
1 = —a—fe =
"g.—n, Pes gs €1
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In spite of the great differences in the assumptions used to derive them, the
hree distributions have a similar appearance. The Bose-Einstein and Fermi-
pirac occupation indices differ from the Boltzmann only in the presence of
he —1 or the +1, respectively, in the denominator. But that little “1” can
have enormous consequences; in order to see these consequences, we ﬁrst
must determine the significance of the constants « and f.
We already should know that = 1/kT, at least in the case of Boltzmann
tatistics, because we have shown by other methods (Chapter 1) that the
Boltzmann distribution is proportional to e~*/*T, To show that  has the
_ same meaning in the other distributions, we consider a mixture of two kinds
 of particles, one obeying Boltzmann statistics, the other obeying one of the_
other kinds of statistics. The energy levels for the two kinds of particles may
 be labeled g, and &, respectively, with occupation numbers ng and »;, respec-
tively. The number of arrangements for a given distribution is P(n,, ;) =
_ P(n,) - P(n;)—the product of the number of arrangements of the two kinds of
 particle separately—and the overall distribution function for the mixture is
found by maximizing In P(n,, n;), in analogy to our previous procedure. The
numbers #, and n, are now subject to three conditions rather than two; we
_ must have

N
m=

I
2

©»
"
-

M8
=,

I
Z

1
-

//_
g =F

! .

Ms

3
Therefore, we introduce three constants, o, ay, and B, into the variation

equation analogous to Eq. (6):

8[In W(ny, ..., ng,...)0+In W(ny{,...,n/,...)]
—O(l 5N1—0C25N2—-ﬂ5E=0

i

t

S[n W(ny,...,ng,..)+InW(ny,...,n;, .01 —ay ), ong
s=1
- azt; on/ — B Zl(éns)ss - B:Zf; én; =0

This equation can be separated into two equations, each involving only
one kind of particle, and we can then proceed to derive the same distribution
functions as before. But notice that we have the same f for both kinds of
particle. Thus if # equals 1/kT for Boltzmann statistics, it must equal 1/kT
for the other kinds of statistics as well. Because only the total energy, and not
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the energy of each kind of particle, is absolutely fixed, we need only one g, or
one temperature, to describe the system. The two kinds of particle are ip
thermal equilibrium, each behaving as if the other were not present,

The parameter o does not have such a simple interpretation, but it is Clearly
related to the number of particles in the system, as it was introduced in cop.
nection with the condition )" n, = N. The explicit evaluation of « in terms
of the parameters of the system (g,, ¢,, N, and T) depends on the type of
statistics. For the Boltzmann distribution, it is easy to write an explicjt
expression for a, as follows:

therefore v

=

)
Z gse —&5/kT
s=

The quantity ) g,e™*/*T is called the partition function of the system, and
denoted by the symbol Z. Thus we may write the occupation indices for the
Boltzmann distribution as

ng N

—_——=—

g9s Z

—&s/kT

Further inquiry into the meaning of « is best done in the course of studying
applications to specific problems.

EXAMPLE PROBLEM 1. Consider a system containing only three
equally-spaced energy levels, &, ¢,, and &, , with degeneracies g1=1, g, =2,
and g, = 2, at a temperature such that k7 equals the difference between the
first and second (or second and third) levels. If there are 100,000 distinguish-
able particles in the system, what is the most probable set of the occupation
numbers ny, n,, and n,?

Solution. We use Boltzmann statistics, because the particles are dis-
tinguishable. We let ¢, = 0. (This choice is arbitrary.) Then ¢, = kT and
83 = 2kT. If we knew n,, we could simply use the Boltzmann factor and the
known degeneracies to find #, and n, . But we are given N, so we use N and the
partition function to find n,, as follows:

Z=)ge "M =1-24+2-e" 142 ¢2
= 1.000000 + 0.735759 + 0.270671
= 2.00643
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N 100,000€°
ny=g;—e " = 2 = 49,840
Loz 200643~
N 200,000¢™ !
n,=g, — e e2/kT — ____—e_ _ 36,670

Z 2.00643

N 200,000e~2 -
= — g ealkT = it b ==
Ny =g, = e 200643 13,490

ny + Ny + ny = 100,000

Let us verify that the total number of arrangements, W(n,, n,, ns), is
maximum for this set of the n, relative to other possible sets. To do this, we
wish to vary n,, n,, and n, in such a way that the total energy and the total
N do not change. We can do this simply by making dn, = ény = —dn,/2.
o let us set dn, first equal to +1 and then to —1, in order to generate two
new sets of numbers—n}, n5, 0, and »Y, ny, n3—such that

wa

ny =49,841; ns = 36,668; ny = 13,491

ni = 49,839; ny = 36,672; n% = 13,489
_ For the respective sets of numbers the values of W are given by

N! 100,000!
W , R T gMigi2ais 4 ' 36670913490
(13, M2, 13) = o 919595 = 25ea01366701134901 © >

100’000' 236668213491
498411366681 13491!

W(nll’ n,2 ’ n’3) =

100,000!
W II, //’ ny _ 3 ¢ 316672~13489
(M, 2, 13) = I58391 366721 134801 > -

_ Obviously, we are not about to compute each of these W, but we can find
_ their ratios without too much difficulty. You can easily see that

W(ny, ny,ns) 49841 x 13491 x 2 134481
W(n,, ny, ny) 36670 x 36669 134465

W(ny, ny, ng) _ 36672 x 36671 134480 1.0001
W(n', n, n3) 49840 x 13490 x 2 134468~

]



\"'1

Thus either increasing or decreasing n, leads to the same result, that the
number of arrangements becomes smaller®; it seems that the distribution v,
found must indeed be the most probable one, given the assumption that each
arrangement is equally likely.
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11.3 APPLICATIONS OF BOSE-EINSTEIN
STATISTICS

a. The Planck Black-Body Law Rederived. There is a striking similarity
between the Bose-Einstein distribution

9s

ns = eaess/kT _ 1

v and the Planck expression for the average energy of the oscillators in the
L walls of a cavity (Section 3.1):

hy
= AT _ ] (14)

€

This is somewhat surprising, because you will recall that the Pfanck law was
derived by application of Boltzmann statistics to the energy levels of oscillators
in the walls of the cavity. But Bose—Einstein statistics can just as well be applied
to the energy levels of the radiation field in the cavity, because photons obey
Bose-Einstein statistics.

You will recall that the radiation field in the cavity consists of standing
waves of various frequencies. A standing wave of frequency v can have energy
nhv, where # is an integer; one can say that such a mode of oscillation “con-
tains” »n photons. Thus we can think of the mode as a state which is ““ occu-
pied ” by n photons, and we can apply statistics to the photons as if they were
particles that are free to occupy various states. If a photon of frequency v is
absorbed by a cavity wall, and a photon of frequency v’ is emitted by the wall,
the result is as if a single particle ““ dropped ” from an energy level of /v to an
energy level of hv', with the difference in energy, /(v — V'), being given to the
wall of the cavity.

To describe the distribution of photons in the various energy states, or
modes, we use Bose—Einstein statistics, as follows. First we note that « =0,
because the number of photons is not fixed.® If N is not fixed, then )’ on, # 0,

5 Notice that the three-level system is particularly well suited for this illustration, because
only one n is independent when N and E are fixed. Thus we need not worry about the
choice of possible variations among the n; the variation in any one of them, for example,
in n,, automatically determines the variations in the other two.

6 If the cavity is to be at a fixed temperature, it is only necessary that energy be conserved.
E may be conserved while N changes; for example, one photon of frequency v may be re-
placed by two photons of frequency 3v.
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and to make the term o Y. dn, equal to zero [to satisfy Eq. (9)], we must set

« equal to zero. The number of photons of energy &, is therefore, according to
the Bose-Einstein distribution function,

gs

N = —F7—
s ees/kT -1

To go from here to Eq. (14) is quite simple; n,/g, is the number of photons
per mode of oscillation, and the energy of each photon is ¢, = hv, so the
average energy per mode is hvn/g,, which from the above equation is just
hvj(e"*T — 1), as required.

If we wish to consider the energy to be a continuous variable, we may write
an equation for the number of photons per unit energy interval as

) = (15)

where £ n(e) de is the number of photons with energy between E; and E,,
and jﬁf g(e) dr is the number of states with energy between E; and E, .

Let us complete the black-body analysis by computing the density of states
g(e) for the photons. The resulting black-body spectrum is, of course, the
same as that derived in Section 3.1, but the point of view is different. The
derivation is repeated here in this slightly modified form because this point
of view is also applicable to subsequent topics in this chapter.

We begin the computation by observing that each photon has x, y, and z
components of momentum, corresponding to wavelengths in the x, y, and z
directions, and each wavelength must satisfy the boundary conditions on E
(Section 3.1). Therefore, if the cavity is a cube of side a, each wavelength is
equal to 2a divided by an integer, and the momentum components of a given
photon may be written

b,
Px=5" =24
hoohl,
Py—:{y“z_a (16)
_h_H,
pz—lz—2a

where I, /,, and [, are positive integers. The photon energy is therefore
given by
82 = 02p2

= c*(p2 + p; + pl)

c2h?
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Comparison of Eq. (17) with Eq. (4) of Chapter 3 shows that this is the same
result obtained there (with & = Av).
Following the method of Section 3.1, we see from Eq. (17) that all set of
integers for which the photon energy is ¢ or less obey the relation
4 2,2
BaB+B<Toy (18

If we consider the numbers /., l,, and /, to be coordinates of a point in three
dimensions, the points corresponding to the numbers which satisfy Eq (18)
must lie within a sphere of radius 2ae/hc. The number of sets of positive
integers within a sphere of radius R is just § of the volume of the sphere, of
$4nR?(3, and there are two modes of oscillation (two polarization directions)
for each set of integers, so the number G of photon states of energy ¢ or less jg

1 4m (2ae\3
=233 (77)
The density of states must then be
dG
g(e) = A
8nVe?
= V=a) (19
Therefore, from Eq. (15),
87 Ve?

n(e) =

The energy density dU in the cavity for radiation of frequency between v
and v + dv is equal to the product of the number of photons per unit volume,
n(e) de/V, and the energy ¢ = hv of each photon. (Remember that a mode has
energy nhv, but a photon has energy hv.) Thus

. 8nede
- h303(ee/k'l‘ . 1)

8nhv? dv
= S

du

and we see that the black-body spectrum can be derived either by applying
Boltzmann statistics to the oscillators, as we did in Chapter 3, or by applying
Bose-Einstein statistics to the photons of the radiation field. In our next
example we shall see that we can do the same thing with the vibrations of a
solid; the vibrations of the lattice are analogous to the electromagnetic
waves in a cavity. The energy of a specific mode of the lattice vibrations is
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uantized, the energy levels again differing by Av (simply because these are
he energy levels of a simple harmonic oscillator).

So we can say that a mode of frequency v, with energy nhv, is a state con-
aining n particles called phonons, and we can treat the phonons just as we
reated the photons in the cavity. A phonon is exactly analogous to a photon;
a phonon carries the energy and momentum of a lattice vibration—a sound
wave—through a solid, just as a photon carries the energy and momentum
of a light wave. The concept of a phonon is helpful in understanding our
second application of Bose-Einstein statistics, which is the specific heat of a

solid.

_ b. The Specific Heat of a SOZ d. Einstein was the first to point out, in
1907,” that the Planck quant}' ation of the energy of oscillators in a cavity
should be applicable to the atoms in any solid. This quantization should have
an observable effect on the séeciﬁc heat. It was already known that the classi-
cal specific heat law (law of Dulong and Petit) was not obeyed by all solids.
According to this law, solids have a constant (temperature-independent)
specific heat of 3R per mole, where R is the gas constant. This is to be expected
classically, because one mole of a solid, with N, atoms, has 3N, modes of
vibration of the lattice (because each atom is free to oscillate in three inde-
pendent directions), and if each mode has an average energy of kT, the total
energy is 3N, kT, making the specific heat 3Nk, or 3R.® But, as Einstein
pointed out, the specific heat is less than this for many solids at room tempera-
ture, and the specific heat becomes smaller as the temperature is reduced.
Einstein saw the similarity of this behavior to the behavior of black-body
radiation: as T becomes smaller, the spacing of energy levels becomes larger
relative to kT, so that quantization is more effective in reducing the average
__energy per mode of oscillation below k7. As the average energy is reduced,
__the specific heat goes down. Thus the failure of the classical specific heat law
~ as T is reduced is analogous to the failure of the Rayleigh-Jeans law as the
_frequency is increased; both laws fail when hv/kT becomes appreciable.
Einstein did not intend to develop a complete theory of solids. He merely
_ wanted to show the similarity of this quantum effect to the effect seen in black-
_body radiation. So he simply assumed that the 3N 4 modes of oscillation of the
_ solid all have the same frequency », and he replaced the classical average energy
kT by the average energy given by the Planck formula (14):

hv

T _ |

g =

T A. Einstein, Ann. Phys. (Leipzig) 22, 180 (1907); 34, 170 (1911).
% You may wonder why the electrons’ contribution to the specific heat is negligible, We
shall answer that question when we discuss applications of Fermi-Dirac statistics.
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The total energy of N, oscillating atoms should then be 3N, hv/(e"/*T _ 1)
which, of course, reduces to 3N, kT if hv < kT. Thus the fact that most solidg
do obey the Dulong-Petit law at room temperature could be explained by
saying that for these solids, the characteristic frequency v must be much
smaller than kT/A. The solids for which the law was not obeyed were assumed
to differ from the others only in the value of v.

If Einstein’s assumptions were correct, one should be able to fit the Specific
heat data for any solid simply by choosing ¥ correctly for that solid; the specific
heat should be the same function of T/v for ¢/l solids. This function can be easily
computed from the above formula for the total energy; it has the interesting
feature that it goes to zero as T goes to z¢ro.

At about the same time that Einstein’s paper appeared, Nernst began 3
series of measurements of specific heats of solids at low temperatures, to test
his belief that molar specific heats of all solids should approach the same value
(not necessarily zero) as T approaches zero. When he later compared his
results with the curve predicted by Einstein’s model, he found serious devia-
tions at low temperatures; although the specific heat did approach zero as T
went to zero, the temperature dependence was not that of Einstein’s formula,

Nernst and Lindemann tried to fit the data by assuming that there are severa]
characteristic frequencies instead of just one for a given solid, but such an
empirical approach could not be very convincing. Obviously, if we have a
few curves to fit, we can do if it we use a sufficient number of independent
parameters, but no fundamental understanding is gained in this way. In 1912,
P. Debye found a more general approach which was quite successful in
explaining the data.® Einstein had assumed that the atoms were vibrating
independently, but Debye considered the possibility of collective motions.
He recognized that the normal modes of oscillation of the atoms in a crystal
lattice can have many different characteristic frequencies, and that the problem
was to decide, on other than empirical grounds, what the frequency distribu-
tion should be for a given solid. He then made the reasonable assumption
that the problem is similar to the problem of electromagnetic oscillations in
a cavity, so that the number of modes per unit frequency range is given by
dN[dv = Av?, where 4 is a constant. This result follows from Eq. (19), if one
assumes that the phoron gas in a cavity has the same modes of vibration as the
phoron gas in a solid. But the phonon gas does differ from the photon gas, in
that it has a limited number—3N ,—of modes of oscillation, and consequently
there must be an upper limit on the frequency of a mode. We can write the
constant 4 in terms of this upper limit v, as follows:

3N, = J.v=vm dN = fovavz dv = é;—'?'

v=0

° P. Debye, Ann. Phys. (Leipzig) 39, 789 (1912). Debye later (1936) won the Nobel Prize in
chemistry for his work on molecular structure.
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9N
A=
vm

The energy of the dN modes whose frequency lies between v and v + dv is
crefore dN &, where &, the average energy of a mode whose frequency is v,
given by Eq. (14). And the total energy!'® is simply

E= f :Oms dN

KT 1 3

v hv 9N,
- fo P v v2 dv

e can simplify this expression by substituting the dimensionless variable
x = hv/kT into the integral, which then becomes

ON  K*T* (kT 3
h3v3, f

E = dx

0 e —1

T\3

/T x3 dx
o) | (20)

0 e —1

where ©p, = hv,,[k is called the Debye temperature of a solid.

When the temperature T is much greater than the Debye temperature, the
variable x is much smaller than 1 over the range of integration. In that case
the integrand becomes approximately x*/(1 + x — 1) = x?, and the energy of
the solid becomes E = 3N kT, which is just the classical expression leading to
a specific heat of 3R per mole. So the solids which obey the Dulong-Petit
law are those for which ®, is small, compared to the temperature at which the
specific heat is measured.

At low temperatures, that is, when 7' < @), the upper limit in the integral
of Eq. (20) is very large, and the integral approaches the limit

3

© X r*
fo ex—ldx=f§

At these temperatures, E must then be proportional to 7' 4, and the specific
heat 3E/0T, should be proportional to 7°. Experiments on a wide variety of
solids has verified this temperature dependence for the specific heat at low
temperatures, and Fig. 3 shows that the Debye theory also agrees with experi-
ment over a wide range of temperatures for several solids. In each case,

10 We are neglecting the ground state, or *“ zero point” energy of Av/2 for each mode (see
Problem 4). This energy, of course, makes no contribution to the specific heat,
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@), is determined from the experimental data, but it is impressive that this is
the only parameter needed to fit all the points. The value of @, obtaineq in
this way is also in agreement with values of the maximum vibration ff.eCIUency
v,, obtained by independent metpods, such as measurement of elastic coy.
stants. But the theory is not perfect ; the weakness in the theory is in its assump.
tion that the crystal is a continuous medium, like the vacuum in a cavity,
As expected, the simple theory breaks down for anisotropic materials, where
the spectrum of frequencies is much more complicated than the simple 2
dependence; more careful measurements have shown that it also breaks down
in other materials. The assumption of a v? dependence is a great oversimplifica.

6 T %

5r "A)‘A'" . 4

4t ]
C,/n 3 p

(cal/mole-°K), ’

2r i

1r B

0 (S T S NN VUD W TR NN SN SRV SR T SV N SR N S 1

0 0.5 1.0 1.5 2.0

7/e
Fig. 3, Comparison of the Debye specific heat curve
and the observed specific heats of a number of simple
substances. (@) Ag,; (A) Al; ((3) C(graphite); (O)AL0;;
(x) KCL. [From “The Modern Theory of Solids> by
F. Seitz. Copyright McGraw-Hill, New York, 1940. Used
by permission of McGraw-Hill Book Company.]

tion, and a great deal of effort has been devoted to the determination of the
actual ““ phonon spectrum” in many solids and to the development of * modi-
fied Debye theories” which are based on different sets of normal modes.
Nevertheless, the simple Debye theory is a remarkably accurate and useful
first approximation.

¢. Liquid Helium and Superfluidity. Our first two examples have shown
us how to use Bose-Einstein statistics as the basis for a calculation; however,
they did not bring. out some distinctive features of these statistics, because
they are somewhat special applications in which the number of particles is
not constant. In fact, it is not even necessary to use Bose-Einstein statistics
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solve those problems, because we can apply classical Boltzmann statistics
the oscillators instead of using Bose-Einstein statistics for the photons or
onons; we have already (Section 3.1) seen how this is done for black-body
jation. ’

But application of Bose-Einstein statistics to a system of material particles,
which N is constant, reveals a startling new possibility, which had been
gested by Einstein in 1924. Einstein pointed out that at low temperatures,
as. of Bose-Einstein particles would undergo a *‘ condensation’ which is
ally different from the ordinary gas-liquid condensation. In this condensa-
n, a large fraction of particles would occupy the lowest energy state. In a
ge scale system in which the quantum number is zero, the correspondence
nciple would no longer apply as it does to most large systems, and thus the
chanical behavior of the system would no longer be correctly described
v classical mechanics. Quantum effects might then be visible, and would not
¢ to be deduced from indirect evidence.

To see why this condensation should be peculiar to Bose-Einstein statistics,
onsider a system containing N particles, with a set of nondegenerate energy
vels (g5 = 1 for all 5). The number of possible distributions becomes enor-
ous for large N, but compare just two possibilities:

(a) There is one particle in each of the lowest N levels.

k‘(b) There are N — 1 particles in the lowest level, and one particle in a
higher level, with energy equal to that of the N — 1 excited particles
in (a).

In Bose-Einstein statistics, both distributions are equally likely, each
ontaining one arrangement. But classically, distribution (a) contains N!
rrangements while (b) contains only N arrangements, so that (a) occurs
N — 1)! times as often as (b). Thus a distribution like (b), with a large fraction
f the particles in the ground state, is always highly improbable in classical
atistics; but we can see the possibility that, at low temperatures, such dis-
ibutions may begin to make their presence felt in a Bose-Einstein gas.
Einstein’s idea was intriguing, but apparently unrealistic, because at the
ery low temperature (about 3°K) at which such a condensation should be
pected, no known substance remains in gaseous form. The condensation
ad been deduced from the properties of an ideal gas, in which one assumes
o interaction between the particles of the gas; but clearly, when a substance
held together in the liquid or solid state, the interaction between particles
ust be considerable. In 1938, however, Fritz London pointed out!! that
any peculiar properties of liquid “He could be explained if it is treated as a
Bose—Einstein ‘‘gas,’’ even though it is in the liquid state.

it F. London, Phys. Rev. 54, 947 (1938). See also London’s ¢ Superfluids,” Vol. II. Wiley,
New York, 1954,
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“He atoms, having total angular momentum of zero, obey Bose—Einstein
statistics. The normal condensation into a liquid occurs at 4.2°K, at atmospheri,
pressure, The temperature can be reduced below that point by reducing the
pressure. As the pressure is reduced, the liquid boils until the temperapyy,
reaches about 2.2°K. At this point, called the lambda (A) point,'? boiling gyq.
denly ceases, although evaporation continues. Of course, boiling occurs i the
first place because the liquid is not at a uniform temperature throughout, apg
bubbles form at the ‘‘hot’’ points. The cessation of boiling indicates a sharp
increase in thermal conductivity; in fact, the thermal conductivity appears infi.
nite, for all practical purposes, so that the liquid is always at a perfectly unifory,
temperature throughout.

Below the A point, liquid “He has another remarkable property: it cap
penetrate through the tiniest capillary, as if the viscosity were zero. But whep
the viscosity is measured by means of a torsion pendulum, by observing the
drag on a set of parallel plates moving through the fluid, the viscosity is o
zero, and it shows no discontinuity as a function of temperature at the
point.

To account for these properties, London suggested that liquid “He below
the A point (called liquid He II) consists of two interpenetrating fluids—g
“normal” fluid and a ““superfluid.” The superfluid is that part of the liquid
whose atoms are in the ground state; the normal fluid is the rest. The norma]
fluid causes the drag on a torsion pendulum; the superfluid seeps through
capillaries. It appears that the atoms of the superfluid, being in a state of
almost perfectly defined momentum, cannot be localized in space. Heating
the liquid destroys superfluid ; but the superfluid, which cannot be confined to
one region of the liquid, is destroyed uniformly throughout the entire volume
of the liquid whenever heat is applied to any point. Destruction of superfluid
is equivalent to a rise in temperature; since this rise takes place everywhere
(almost) simultaneously, the fluid appears to have infinite thermal conduc-
tivity.

In a moment we shall discuss further the reason for this strange behavior of
atoms in the ground state. Right now let us look more carefully into the
properties of an ideal Bose—Einstein gas at low temperatures, to see just how it is
that so many atoms condense into the ground state, and why this con-
densation makes its presence felt at a well defined nonzero temperature. We
begin with the Bose-Einstein distribution numbers

s e«ees/kT -1

12 Called the A point because the curve of specific heat versus temperature resembles the
letter A near this temperature,
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The zero level of energy is arbitrary, so let us set the energy of the lowest
vel equal to zero; that is, we let ¢, = 0. In this case, it is clear that « > 0,
or if o were zero, as in the cases when the number of particles is not fixed,
he value of n; would be infinite, and if & were negative, n, would be negative,
ccording to Eq. (21), and a negative value of n;, makes no sense.

Now in dealing with a macroscopic sample, the usual procedure is to
eplace 7, by a continuous function n(g), as we did in parts a and b of this
ection, because in a macroscopic system the energy levels may be spaced so
osely that their discrete nature is not observable. But we must be careful
hen we are dealing with low temperatures, because the total energy involved
so small that the discreteness of the levels may be important even in a
acroscopic system. With this in mind, let us proceed to a continuum descrip-
on and see what happens. We write, in place of Eq. (21),

) = D @)

n equation similar to Eq. (15), except for the factor e*.

We may find g(¢) by the same basic method used for photons. In a cube of
side a, the permissible wavelengths are the same for material particles as for
“photons, and there is the same connection between wavelength and momentum in
_both cases. Therefore the momentum components of a given particle are given by
_Egs. (16). But if the particle has mass M, the momentum-energy relation at low
eenergies is & = p?/2M rather than € = pc, and Eq. (17) is replaced by

L+ L+ )
8Ma?

The integers for which the particle energy is ¢ or less obey the relation

8MaZe
h2

Z+12+12<g
and the points corresponding to these integers lie within a sphere of radius

(8Ma*c/h*)'/*, The number G of states within this sphere is equal to § of the
volume of the sphere, or

1 4rn (8Ma?s\3/?
L -
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or, witha® =V, ‘
2M\ 32
g(e) = 2nV(h—z) g/ (24)

Now we may find a relation between N and « by using the fact that

S OY:
N=f0 n(e)ds-—-fo W‘l—l

2M\3/2 0 gl/2 g
= 275V(71?) fO —e—aee/kT -1
Let us make the substitutions 4 = 2nV(2Mk/h?*)*'? and x = ¢/kT to obtain

© x1/2 dx
atx 1 (25)

N = AT%? fo -

We may rewrite Eq. (25) as
12
ea+x

(1—e ) dx

N = AT*? f:

which may be expanded to give

N = AT?? me“ze'“"‘(l + 7O 42N 4y gy
0

and integrated term by term, If one remembers the definition of the gamma
function:

I'(n)= fo x"leT* dx

the integral may be written

3 e—Za e~3a
N=AT3/2F(—2-)[6_°'+§3—/{+33T+ ]

or
N = AT (%) f(e) (26)
where
© e‘P“
f(a) = Z 372
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he series sum f(o) is plotted versus « in Fig. 4. We may use Eq. (26) to.
ermine the value of a for a given temperature, as follows: We simply use
values of N, 4, T'(3), and T to compute the value of f(x), and we then

cad off the corresponding value of « from Fig. 4. (Note: T'(3) = ﬁ/2 =
8623.)

3.0r

2612

2.0

Fig. 4. The function f(«) appearing in Eg. (26).

‘But there is a serious difficulty as T approaches zero. Since N, 4, and
(3) are all independent of T, we have, directly from Eq. (26),

N
f(a)=mé—)—>oo as T-0.
ut f(«) is a mathematical function whose largest value, according to Fig. 4,
2.612, at a = 0,'3 so Eq. (26) cannot possibly be correct in the limit T — co.
What went wrong? Remember the warning about the passage from Eq.
1) to Eq. (22). There is one obvious discrepancy between Eq. (21) and our
ter equations; We found that g(¢) is proportional to \/E, so that g(¢) = 0 at
0, but obviously a value of the degeneracy smaller than one does not
ake sense physically. In fact, we know that the degeneracy of the lowest
vel is g, = 1; for this level /, =1, =1, = 1. Therefore this level is not
represented in Eq. (22), because it has a weight g(¢) = 0 when we use the
continuous form for the degeneracy g. We can correct this situation simply
by writing », separately in the expression for N:

o © 1 ©  g(e) de
N—-n1+f0 n(a)de—-ea_1+f0 T ]

13 Remember that « can never be negative,
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or

N =

7 T ATV TS @) @)

an equation identical to Eq. (26) except for the additional term 1 /e —1) = .
on the right-hand side. As 7— 0, the second term of Eq. (27) goes to Zerol
but the first term has no upper limit as « — 0, so there is always some positivé
value of « which satisfies the equation. Notice that o may now be expresseq
in terms of n,, for if

. 1
I e 1
then
ef=1 +l
ny
and
1
o (n,» 1) (28)

1

We would now like to determine the temperature T, at which the system
begins to *“ condense” into the ground state—that is, where ny becomes very
large. For T > T, we assume that n, is negligible compared to N, because the
particles are spread out over an enormous number of levels, and there is no
loss of accuracy in using Eq. (26) instead of the more correct Eq. 27). We
may then define T, as the temperature below which Eq. (26) can no longer be
satisfied by any value of o, and we may determine the value of T, simply by
setting f(«) in Eq. (27) equal to its maximum value, 2.612, and solving for
T:

(29)

N 2/3
rn et

2.6124AT(3)

We may use Eq. (27) to study temperatures below T,. Since f (o)) = 2.612
at T =T, we might conclude that & = 0 at T = T, but this cannot be correct,
because according to Eq. (28), n, becomes infinite at o = 0. However, we are
considering systems in which the total number of particles N is of the order
of 10?3, so that « is certainly very close to zero when n, becomes at all com-
parable to N. For example, suppose that », is “only” 10'°; then o ~ 1072,
and f(«) ~ f(0) = 2.612 to much better than four-place accuracy. Yet in this
case ny is certainly negligible compared to N, so that Eq. (26) is still valid!
As ny increases, « becomes still smaller, so that whenever it is necessary to
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s¢ Eq. (27) instead of Eq. (26) we may set /' («) equal to 2.612, even though o
pot quite zero. With f(«) = 2.612, Eq. (27) becomes

N =n, + 2.6124T3T(3),

T 3/2
N=n, +N{=
it (T)

n 1 = N{l - (%) 3/2} (30)

[+

from Eq. (29),

igure 5 shows the temperature dependence of n,, as given by Eq. (30).

m

N2 -

1
T./2 T.
T

Fig. 5. Temperature dependence
of ny for anideal Bose—Finstein gas.
When T > T, ny is not necessarily
zero, but it is so “‘small” (perhaps
of order 10*° or less) that it does
not show on this graph.

_If we use the density and particle mass of liquid “He to compute the constant
_ A/N of Eq. (29), we obtain for the critical temperature 7, = 3.13 K instead of the
_ actual value of 2.2 K. But the analysis here applies only to an ideal Bose-Einstein
gas, in which there is no interaction between particles, so we should not expect it to
be numerically correct for liquid helium. Interaction between the helium atoms cer-
tainly affects the energy levels, so that g(e) is not given correctly by Eq. (24). How-
ever, the derivation does show how a condensation into the ground state can occur,
and it shows that Bose-Einstein statistics must have some relevance to the situation.
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There have been attempts to explain the properties of liquid He (II) Withoyg
reference to Bose—Einstein statistics. But convincing evidence of the role of
Bose—Einstein statistics is found in the behavior of liquid *He, an isotope which
one would expect to behave very much like *He, and which fulfills this expect,.
tion except in its superfluid behavior. Liquid *He is a superfluid only at temperg.
tures below 0.0025 K. The difference results from the fact that the atoms of 3He
have spin % rather than spin zero, so they obey Fermi—Dirac rather than Bose-
Einstein statistics. This makes condensation into the ground state impossible
until the temperature becomes so low that *He atoms form pairs whose totql Spin
is integral 14

Thus it seems that condensation into the ground state is a necessary cop.
dition for the occurrence of superfluid behavior. But it is not a sufficien
condition. We have not yet answered the question of why such atoms behave
as a superfluid, and the answer depends on the fact that there are interactiong
between the particles. An ideal Bose-Einstein gas, even though it condenses
into the ground state, does not become a superfluid. To understand this, we
must begin by considering why ordinary fluids are not superfluids.

A fluid flowing through a tube is slowed down because interactions between
the fluid and the wall of the tube convert the fluid’s translational energy into
internal energy-—that is, into random motion or heat. This occurs in an
apparently continuous fashion, because in a normal fluid there are many pos-
sible internal motions which require very little energy to excite them. Super-
fluid behavior requires that there be no low-energy states which can be easily
excited—that there be a gap between the ground state and the lowest state
which can be easily excited by friction with the walls of the tube. Then if the
fluid flows sufficiently slowly through the tube, the atoms cannot acquire
enough energy from the walls to enable them to cross this energy gap; they
stay in the ground state, and their translational motion continues unimpeded.
(We still consider the atoms moving through the tube to be in the ground
state, even though they have translational kinetic energy; we can consider the
atoms to be at rest in a different frame of reference, and the tube to be moving
past them.) As long as the speed of the fluid is below a certain “critical vel-
ocity,” superfluid flow continues. If the speed exceeds the critical velocity, the
fluid-tube interaction becomes able to excite turbulent states of the fluid, and
the fluid is slowed down.

Precise determination of the nature of the excited states and the magnitude
of the energy gap is difficult. It has been observed that a critical velocity
exists for superfluid flow of liquid helium, but it is difficult to calculate theo-
retically what its value should be; oversimplified calculations can lead to a
value of the order of 100 times too large. However, it is not too hard to show

4 D. D. Osheroff, N. J. Gully, R. C. Richardson, and D. M. Lee, Phys. Rev. Letters 28, 885
(1972). The magnetic properties indicate that the total spin is one rather than zero. See *“The Helium
Liquids,”” J. G. Armitage & 1. E. Farquhar, eds., Academic Press, N.Y., 1975,
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ualitatively that an energy gap exists, and that its existence depends upon an
nteraction between the helium atoms. '

The interaction potential between two helium atoms has been calculated
by quantum mechanics to be as shown in Fig. 6. Notice the sharp rise with
ecreasing r near 2.5 A, as if a helium atom has a very hard ““core” which
epels other helium atoms. Now consider the ground state and first excited
tate of a collection of N helium atoms, taking the wavefunctions to be the
nperturbed functions discussed previously'—single-particle states for a par-
icle in a box. The first excited state of the system is one for which all
but one of the particles is in the ground state, and one particle is in the first
xcited state. (Here, as elsewhere in this section, we are considering the atoms
o be particles; we are not considering internal energy levels of the atoms,
but rather levels of the particles in the “box.”) We state without proof
that, because of the symmetry of the wavefunction for the system, there is
for the first excited state a greater probability of finding two helium atoms
_within 2.5 A of each other, where the potential energy becomes very large.
Thus the energy of the first excited state is raised, relative to that of the ground
state, as a result of the interaction and an energy gap is thereby created.
This discussion is necessarily incomplete and somewhat vague. Because
the interaction exists, there are other possible excited states in addition to
the single-particle states discussed. But further analysis of the nature of these
states would lead us far beyond the scope of this book, into areas which are
still imperfectly understood.

oL
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Fig. 6. Interaction
potential between two
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We conclude this discussion with a description of the most spectacular of
the phenomena attributable to superfluidity—the fountain effect. To achieve
this effect, a tube is plugged with emery powder and cotton at the bottom,
with the top left open, and then it is immersed in liquid Hell, as in Fig. 7.
Heat is then supplied to the helium inside the tube, so that some of the He
atoms are raised from the ground state; superfluid is ‘““destroyed” inside
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the tube. Destruction of superfluid' is equivalent to raising the temperatupg,
In order to maintain uniformity of temperature and of superfluid fractiop
throughout the volume of the fluid, superfluid rushes in toward the heater,
(Remember the observation of the high thermal conductivity of liquid HeII,)
If the plug were not present in the bottom of the tube, movement of superflujq
toward the heater would be accompanied by movement of normal fluid
away from the heater, both movements tending to transfer heat from the
heater and maintain a uniform temperature throughout the fluid, without any
net transfer of mass in either direction. But the plug prevents the normal fluid,
with its nonzero viscosity, from flowing out the bottom of the tube, so there
is a transfer of mass into the heated region, and the liquid level builds up in
the tube. If the tube has a narrow top, a fountain of liquid helium eventually
shoots out the top of the tube.

——Helium

fountain
|
0
Fig. 7. Schematic illustra- ,:\\O '(
tion of the fountain effect, ~—\N
[From * Principles of Modern \
Physics” by R. B. Leighton.
Copyright McGraw-Hill, New
York, 1959. Used by permis- Heater
sion of McGraw-Hill Book Liquid
Company.] helium
Emery Cotton
powder plugs

11.4 APPLICATION OF FERMI-DIRAC STATISTICS:
' FREE ELECTRON THEORY OF METALS

The large electrical and thermal conductivity of metals indicates that many
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ctrons—presumably the valence electrons—are not bound to individual
oms in a metal, but instead move freely throughout the volume of the metal.
parently a valence electron can move in any direction with ease; as long as
t remains inside the metal it is being pulled from all sides, and the forces in
1 directions tend to cancel each other. It is only when the electron reaches
he surface of the metal that the positive charge of the atomic lattice pulls it
Jack into the metal. In other words, the valence electrons in a metal behave
ike a gas confined within a box.

a. Electronic Specific Heat. The picture of metallic electrons as a gas is
her old, but it caused a puzzle for a long time, because this gas makes very
tle contribution to the specific heat of the metal. A classical gas, having an
ergy of kT/2 for each degree of freedom, would contribute a specific heat
R/2 per mole per degree of freedom ; the electron gas, being like a monatomic
s, might therefore be expected to contribute 3R/2 per mole. But the elec-
ronic contribution to the specific heat of a metal is known to be much smaller
an this at room temperature, and it is not constant, but is proportional to

Of course it should be no surprise to you that classical statistics fails to
sive the right answer, because an electron gas should obey Fermi-Dirac
tistics. Using Fermi-~Dirac statistics, we can easily show in a semiquantita-
ive way that the electronic specific heat should vary linearly with temperature.
‘o do this, we begin as we did with the other statistics, by investigating the
arameter o. As before, « is a function of temperature which is determined
the condition that the total number of particles in the system is constant.
In Fermi—Dirac statistics, it is convenient to write & as — u/kT, with 4 another
unction of the temperature. This is merely a mathematical substitution; we
hall see in a moment how it simplifies the analysis. The occupation index is

ny 1
ds T (e WIKT +1

for a continuous distribution,

n(e) 1

9@ T 1 | (31)

and p is seen to be the energy at which the occupation index is 4. We can
valuate u (called the chemical potential) for a given system at any temperature
by applying the condition N = [ n(e) de and solving the equation for p.

_ Fortunately we can solve many problems without determining the precise
mperature "dependence of u, simply by considering the Ssituation near
=0 K. At T'=0 we should expect all particles to be in their lowest
possible energy states; as only one particle can occupy a given state, the
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occupation index should be 1 for.the N lowest states and 0 for al] higher
states. Equation (31) bears out this expectation; at T= 0, the €Xponen
becomes + oo for ¢ > pu and — oo for & < y, so that

1 (e<p
0 (e>p

and at 7= 0 K, u must be equal to the energy of the Nth state. This energy i
called the Fermi energy &, a constant for a given metal.

Figure 8 shows the effect of raising the temperature. The curve remaip
symmetrical about the point & = u, where the occupation index n(e)/g(e) = 1,
As T increases, u becomes smaller, but as long as kT is much smaller thap &,
p remains very close to g. For example, if k7 = 0.0l¢; and g(e) is constant,
it is not too hard to calculate that u differs from & by less than one part in
10*°. (See Problem 6 for another example.)

n(e) =

€,

b l(e_)
(b) gle) kTA—l
€ U1
1k
nle)
(C) gle)
PR

Fig. 8. The Fermi-Dirac occupation index; (a) at
T = 0°K; b) at small T, such that kT is of magnitude
shown; (c) at very high T, where w becomes notice-
ably smaller than ¢,.
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If the temperature is raised so that kT > g, then p eventually becomes
egative, so that only the *tail” of the Fermi-Dirac distribution appears in
he positive energy levels, and the distribution merges into the Boltzmann
istribution (as it should, for at such high temperatures, the density is so low
at individual particles are distinguishable by their positions).

It happens that & is several electron volts for metals, so that kT < ¢ for
ny solid metal, and we have no further need to consider the temperature
dependence of u; we shall simply set u equal to & in the subsequent discussion.
The fact that kT < g; immediately explains the linear temperature depend-
ce of the electronic specific heat of metals. The occupation index is virtually
until & — & is of order k7, and it falls from 1 to zero over an energy range
a few times k7. Thus only a small fraction of the electrons gain energy
when the temperature is raised from 0°K to a temperature T'; electrons are
ransferred from the shaded area below ¢, (Fig. 8) to the shaded area above
¢. The average gain in energy per electron is the distance, on the energy
axis, between the centroids of these areas; this distance is proportional to kT.
The number of electrons which gain energy is proportional to the magnitude
of the shaded area below &;; this quantity is also proportional to kT. The total
energy gained by the electrons is proportional to the product of these two
factors, that is, to (kT)2. Since the specific heat is the temperature derivative
of this gain in energy, the specific heat is proportional to T.

cit

2.08

0.1 0.2 0.3
TZ

Fig. 9. Specific heat of potassium at low T, plotted as
C|T versus T?. The fit to a straight line, C{T =2.08
+ 2.57T2, shows that C is given by the sum of a linear
term and a cubic term [W. Lien and N. E. Phillips, Phys.
Rev. 133, A1370 (1964)).

Thus the specific heat of a metal at low temperatures is the sum of an elec-
tronic .contribution proportional to 7, and the lattice contribution, propor-
tional to T3, which we have already discussed (Section 11.3b). Figure 9 shows
ow well this is verified by experiment.
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b. Calculation of ¢; for a Metal. The general conclusions of the pre.
ceding discussion depended primarily on the fact that the electrons in 4
metal form a Fermi gas, and did not depend on the actual form of the potep.
tial energy for each electron. But if we wish to calculate the Fermi energy &
for a metal we must determine g(¢); this requires that we calculate the energy
levels of the system, which we can only do if we know the potential energy,

The simplest assumption we can make is that the potential energy is con.
stant inside the metal. This is somewhat unrealistic, for we know that the
electrons are strongly attracted to each atomic core in the metal, so that the
potential energy should become very negative at these points. But the simple
assumption of constant potential energy turns out to give very good results
and is a good starting point in any case. ’

If the potential energy is constant, we have already solved the problem of
finding g(e), because it is almost the same as in the liquid helium problem
(Section 11.3c). The metal is a box within which the electrons are confined, and
we require that the wavefunction be zero at the walls of the box. The possible
wavelengths are therefore the same as those already found for He atoms (Sec,
11.3). To find G, the number of states below a given energy €, we therefore use
Eq. (23), replacing the helium mass M by the electron mass m,, and multiplying
by two, because there are two possible spin states for each set of wavenumbers

L, I, I.. Thus
3/2
G = aV (Smes) (32)

3 h?
When G = N, the total number of valence electrons, then € = &,’ and we may

write
N = wV (8m.e 3/2
3 h?

and solve for the Fermi energy:

&

2 2/3

_h (ﬁ) (33)
8m, \nV

The appropriate electron density N/V to use here is the number of valence

electrons per unit volume; the other electrons are bound tightly to the atomic

cores and are not part of the “ gas.”

EXAMPLE PROBLEM 2. Compute the Fermi energy of aluminum.

Solution. The atomic mass is 27, the density is 2.7 gm/cm?, and the
valence is 3, so the valence electron deusity is

N _ 3 X6.022 X 10% % 2.702g _

= 26.98 & = 1.809 % 10" cm™
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2 (3 N) 23
T 8m,\nV

_ Rh%? (0.1809 A—S)m

™
-
|

8m.ct " 1.047
(1.240 x 10%? eV2-A2
8 X 5.11 X 10°eV
er=11.66 eV

Alummum boils at T = 2330 K, where kT is still only 0.19 eV. The Fermi
energy is, of course, lower for monovalent metals, but it still corresponds to a
very high temperature; Fermi energies for several monovalent metals are
isted in Table 4, with the equivalent temperatures (g/k).

x (0.1727)%3 A-2

Table 4

Fermi Energies and Equivalent Temperatures for Some Metals

Metal & (eV) % (K)

Li 4.7 5.5 % 10*
Na 3.1 3.7

K 2.1 2.4

Rb 1.8 2.1

Cs 1.5 1.8

Cu 7.0 8.2

Ag 5.5 6.4

Au 5.5 6.4

In Chapter 13, we shall see how it is possible to use positrons as a “probe”
_to measure the momentum distribution of electrons in a metal and thereby
btain a fairly direct test of the value of &;. The final result for &; has been found
_to be in agreement with Eq. (33), with a logical number of valence
electrons, for every metal which has been tested. Thus, in spite of the crude-
ness of the underlying assumption that the potential energy is constant, this
_model is a useful approximation which is a good starting point for a study of
electronic structure of metals.

¢. Work Function and Contact Potential Difference. The Fermi energy is
the kinetic energy of the electrons in the highest occupied states. We can
relate this to the work function of the metal bya diagram like Fig. 10, showing
the potential well in which the electrons reside and the filled states up to
energy e, above the bottom of the well, If the well depth is W, the work func-
tion, being the energy needed to remove an electron from the metal, is obviously

ep =W — g;.
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A diagram similar to Fig. 10 is useful in explaining the contact differenc,
1 of potential between two metals.” When a wire is connected between ty,
, (; metals, electrons can flow from one metal to the other until the Fery;

: levels' >—the energies at the top of the filled states—are equal. Figure ||

¥ Fig, 10. Relationship be-
€ tween well depth W, Fermi
energy €, and work function
W e for electrons in a metal,’
€f Horizontal lines indicate
] J filled energy levels.
I. € bh
W,
Wy
Gfa
Efb

edp
ed,
€r
a Erh

{b)

Fig. 11. Effect on Fermi level when two metals are
(a) separated (b) connected. Change in level results from:
change in the potential well, with negligible change in
Fermi energy of either metal.

15 Note the distinction here between Fermi level and Fermi energy. The Fermi energy is the kinetic en-
ergy of each electron in the highest occupied states; the Fermi level is the total energy of each of these
electrons, with respect to some outside reference energy.
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hows what happens. Initially the metals are separated and uncharged, so that
he potential is zero in the space between them. The metals have different
well depths, different Fermi energies, and different work functions, so
hat there are electrons in metal A with higher rotal energy than that
f any electron in metal B (at 7=0). When the metals are connected
ogether, electrons flow from metal A to metal B in order to occupy the lower
nergy states available in B. Metal B becomes negatively charged, metal A
ecomes positively charged; and the potential energy is no longer zero in the
egion between the metals, so the potential well in B rises, relative to that in
A, until the energy at the top of the filled levels in B equals that in A. The
umber of electrons transferred is minute!® in comparison to the total num-
er present, so the values of ¢ and e; are unchanged in each metal. The figure
makes it clear that the difference in electrostatic potential between A and'B
ecomes ¢, — @,.

Figure 10 helps us to understand the circumstances of a photoelectric experi-
ment. If metals A and B are the two electrodes in a photocell, with ¢, > ¢,
he applied retarding potential ¥ that is required to stop all the electrons is given

y
eV = hyv — €¢b

egardless of whether metal a or metal b is irradiated.'”

It should also be noted that the contact potential difference cannot be
measured with a conventional voltmeter. (Why not?) There is, however, a
airly direct way to measure it, by making a parallel-plate capacitor of the
wo metals, with a wire joining them, and measuring the current in the wire
as the distance between the plates is varied. Changing the distance changes the
apacitance, while the voltage across the capacitor remains constant (because
t is the contact potential difference), so the charge on the capacitor must
hange, and a flow of current results. A known additional potential dif-
erence can then be inserted into the circuit, and varied until there is no longer
a current flow when the capacitance is changed; at this point the voltage
on the capacitor must be zero, so the additional potential difference must be
ust equal to the contact potential difference (and opposite in direction, of
ourse.) '

d. Emission of Electrons from a Metal. In the preceding discussion we
gnored the electrons whose kinetic energy is greater than the Fermi energy.
At any temperature above 0°K there are always some electrons, in the tail of
the distribution, with enough kinetic energy to go over the hill and escape

¢ See Problem 7 for verification of this statement.
* For further discussion of this point, see J. Rudnick and D. S. Tannhauser, Am. J. Phys. 44, 796
1976).
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from the metal completely. If one measures the energy distribution of the
electrons after they have escaped, one finds that it is a Boltzmann distributjoy,
This seems odd at first glance, because the electrons in the metal obey Ferm;_
Dirac statistics, What causes them to switch over to Boltzmann statistics 9

If you have followed us to this point, you will realize that no switch
is involved. The tail of the Fermi-Dirac distribution is a simple exponep.
tial, just like the Boltzmann distribution; the energies of the escaping electrong
exceed the Fermi energy by many times kT, so that e®~**T» 1, and tpe
occupation index is

1

—(e—er)/kT
e(s— er)/kT + 1

- €

— constant x e /T
which is the same as that for the Boltzmann distribution. .

But in addition to measuring the energy of the escaping electrons, we can
also measure the number of electrons which escape, as a function of tempera-
ture. The ability of Fermi-Dirac statistics to explain this temperature de-
pendence, after classical calculations failed, was a great triumph for quantum
theory. According to Boltzmann statistics, the current density of escaping
electrons should be proportional to T%e™°*/*T but experiments show that
this current density is proportional to T2e~°#/¥T, The derivation of the latter
temperature dependence is straightforward, if Fermi-Dirac statistics are
used. Details are left as a problem (Problem 8).

Another interesting situation arises when an electric field is applied at the
surface of a metal. The effect of such a field is to change the potential energy
for an electron near the surface. Therefore, let us abandon our approximation
that the electrons are in a square potential well, and let us examine more
closely the shape of the potential near the metallic surface. Standard electro-
static theory tells us that an electron just outside a metal is not in a region of
constant (zero) potential, but rather that the electron is attracted to the metal
by a force which is equal to that of an “image charge” located inside the
metal at the point where the mirror image of the electron would be. If the
electron is at a distance x from the surface, the distance between the electron
and its image is 2x, so the electron feels a force of e?/4ne,(4x)? (in mks units),
and the corresponding potential energy is

e2

V(X) - .1671'80 X

(34)

This potential would go to —co as x goes to zero, but we know that the
well has a finite depth W. Therefore we cut off the potential (34) at the point
where it is equal to the well depth, that is, at x = x_, where
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2

e
W= -
167e, X,
so that V(x) = — W for x < x,, and the resulting potential is as shown in

Fig. 12a. This potential is still a bit unrealistic, because the metal is not really
_a continuous medium, but we can use this model to make rough calculations
of the effect of applying an external electric field. i

When a uniform external field is applied to the metal surface, in a direction
toward the surface, so that it tends to pull electrons out of the metal, the
potential becomes that of Fig. 12b. The potential energy never reaches

v

Metal surface

(a) .

Potential energy
caused by applied
field

I

effective W

Total
potential
energy of
electron

(b)

Fig, 12, (a) Potential energy of an electron near the sur-
Sface of a metal, including the effect of the image charge, but
ignoring the effect of individual atoms. (b) Potential energy
after a uniform electric field is applied to the surface; the
linear potential of the applied field is added to the potential
shown in (a).
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zero, but instead goes to a maximum and then decreases. Thus the effectjy,
well depth—the difference in energy between the bottom of the well and the
maximum value of ¥(x)—is smaller than W, and the work function is COL-
respondingly smaller than in the field-free situation.

At any given temperature the application of an electric field increases the
current of electron emission, not only because of the decrease in the effective
work function, but also because it is then possible for some electrons tq
tunnel through the barrier formed by the potential. This tunneling is possible
because the barrier is no longer infinitely thick; as you can see from Fig.
12b, there is a region outside the metal where the potential energy of ap
electron is lower than it is inside. Calculation of the electric-field dependence
of the electron emission current, taking account of these two effects, gives
results which are in reasonable agreement with experiment.

e. Pauli Paramagnetism. Paramagnetic susceptibility is another property
of metals which is not correctly accounted for by classical statistics, Consider
a gas of N particles of spin 4 and magnetic moment p. If a magnetic field B is
applied, a particle whose moment is parallel to B has a magnetic energy of
—uB,™® and a particle whose moment is antiparallel to B has a magnetic
energy of +uB. According to classical statistics, the number of particles in
each group is determined simply by the Boltzmann factor e~**T, so that if
uB < kT, the number of particles whose moment is parallel to B is

N
ny 3 e+uB/kT
N ,uB}
~ il 4+ —
5 { + T (35)
and the number whose moment is antiparallel to B is
N N(. uB ‘
~ _ o HBIKT , 7 ————
fa=n e "2{ kT} (36)

We may use the numbers n; and n, to 'compute the paramagnetic sus-
ceptibility, as follows: The difference between n, and n,, multiplied by g,
is the total magnetic moment of the N particles. The paramagnetic susceptibility
x is defined by the equation'®

M= yH 37
where M, the magnetization, is the total magnetic moment divided by the
volume. According to Egs. (35) and (36), the magnitude of M must be

18 Since the z component of u has only one possible magnitude, we denote that magnitude simply by
the symbol w. For an electron, s = efi/2m (Section 7.3). As usual, we assume B to be in the z
direction, with B, = B,

19 In mks units, where B = (H + M)/ec2.
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p(ny — ny)
M=
NuBy
M (—k_f) Nu*B
T~ Vv T kTV (38)

where V is the volume of the gas. We are concerned here with a situation in
which x is quite small, in which case we may write B~ H/g,c?, and Eq.
37) becomes
M = yB gy’
Comparison with Eq. (38) then yields

Nu?
. T kTVe,c?
_ Equation (39) says that x is proportional to 1/7, a result known as the Curie
aw, which is valid for many materials. But the measured paramagnetic suscep-
ibilities of solid metals are independent of T, and are only about 1 percent as
arge as the values predicted by Eq. (39) for room temperature. Of course, a solid
metal does not behave- like 'a classical gas, but in this case the electrons in the
metal do form a Fermi gas. We can quickly explain the temperature inde-
endence of x by means of Fermi—Dirac statistics, as follows: Electrons with
nergy much less than & cannot contribute to the total magnetic moment, be-
ause there are equal numbers of states with spin parallel to B and with spin
ntiparallel to B, and all of the states are filled. The only electrons which can
ontribute to the susceptibility are those in the region where some states are filled
nd some are empty. The number of such electrons is proportional to AT’; the T
ependence of this.number cancels the 1/T dependence expected from Eq. (39),
eaving a susceptibility which is independent of 7.
Pauli explained this point in 1927, and he derived the correct formula to
eplace Eq. (39), using the following line of reasoning: Since we expect the
esult to be independent of T, let us compute it at 7= 0. We consider the
_electron gas to be two gases, one with spin parallel to B and density n,(e)
_ per unit energy interval, the other with spin antiparallel to B and with density
_ my(e) per unit energy interval. We may plot both densities on the same graph,
_ using the upward axis for #,(¢) and the downward axis for n,(e) (see Fig. 13).
Because the occupation index is 1 for & < ¢, each curve is the same as the
curve of g(g), which is proportional to ¢'/%, Figure 13a represents the situation
when B = 0; there are equal numbers of electrons in each gas, Figure 13b
shows what happens when a field B is applied. The energy of each electron in
_gas 1 is reduced by an amount uB, and the energy of each electron in gas 2 is
increased by the same amount. Electrons in the shaded part of gas 2 now find
that lower energy states of opposite spin are available to them, so they flip
their spins and join gas 1, filling the shaded area there. The number of elec-

X (39)
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] ny

ﬂl(E) ‘ /E
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uBJ<\E
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n, 1y
(a) (b)

Fig, 13, Shift in occupation density n(e) for an electron
gas when a magnetic field is applied. See text for details.

trons which flip is equal to the shaded area in either gas; if uB < kT, this
number is

hey= %#Bv”(sf) = tuB g(&)

the factor of } entering because the density of electrons in each gas is only
one-half the total occupation density n(e). ’

Each electron’s magnetic moment changes by 2u when it flips, so the net
resulting magnetic moment is 2un, = u*B g(g), and the resulting magnetiza-
tion is of magnitude .

’By(e
M= H 5( £)
The susceptibility is thus
¥y = #2g(e)
Vegc
The density of states is
g(e) = c‘li_f imar

and
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The susceptibility is often written in terms of the electron density N/V.
nce, from Eq. (33), '

3 2

1= o=l (40)
While it is a vast improvement on Eq. (39), Eq. (40) yields values of y which
fler from experimental results by almost a factor of 2 even for alkali metals,
r which the agreement is best. The error must lie in the calculation of g(&);
¢ cannot expect to obtain g(e) accurately from an assumption that the poten-
al energy of an electron is constant inside a metal. The actual potential
nergy is periodic, with a minimum at each lattice point, where a positively
harged atomic core resides. In an alkali metal, the Fermi energy is so small
at the wavelengths of the free electrons are all much greater than the lattice
acing; thus the periodic variation of the potential has less effect than in
ther metals and we should expect Eq. (40) to work best in this case.

f. Electrical Conductivity. One might expect the exclusion principle to
ave a great effect on the electrical conductivity of a metal, because acceleration
f an electron requires the transition of an electron to another state, and many
ates are unavailable because they are already occupied. However, the effect is
ot drastic, as we show with the aid of Fig. 14.

When the field is applied, electrons at the ‘“‘front’’ of the distribution can
asily be accelerated, because they can transfer to empty states of larger p . This
eans that all the electrons can be accelerated, because the electrons with
maller p, simply move into the states vacated by the electrons with larger p..
he entire distribution can thus be rigidly accelerated by the field, without
nning afoul of the exclusion principle.

Eventually the whole distribution is displaced by an amount mv, where v is the
‘terminal velocity,”’ determined by energy losses to the lattice as electrons are
cattered by atoms in the lattice. These energy losses result from the recoil of the
tomic cores; since these cores are much more massive than an electron, an
electron loses only a small fraction of its energy in each scattering event. If the
lectric field is increased, the electrons will go to a larger average velocity, until
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the larger energy losses from scattering just compensate for the larger energy put
in by the electric field.

n/g
k- ~ |
v B
—pr 0 pr Px

Fig. 14.  Occupation index nig as a function of x compo-
nent of momentum. In zero electric Jield, distribution extends
SJrom —p,to +p,. When field is applied in x direction, elec-
frons are accelerated into the blackened region, and accel-
erated out of the shaded region, shifting the whole distribution
by the amount mv.

When the field is turned off, these energy losses to the lattice cause the average
velocity to return to zero, and the current ceases. Although the energy change in
each scattering event is very small (relative to the Fermi energy), the momentum
change is usually large (relative to the Fermi momentum p,), because an electron
can only be scattered if its final state, after scattering, was previously unoc-
cupied. Thus electrons are scattered from the blackened region (Fig. 14) into the
shaded region. For example, an electron with momentum p, = p; + mv can lose
energy by scattering to a state with |p,’| < p,.. But the lowest-energy unoc-
cupied state such that |p,'| < p, is at approximately (from Fig. 14)

P = —pr+ mu

Thus the maximum energy loss is
2 _ 2
AE, = P2" Pz "
} 2m

= (p+ mu)® — (p,— mo)?
2m

=2pp

Since E; = p%2m, we can write this result as
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AE,..  2pwp
E;, = pi2m 1)

__ 2mv

Pr

1 most cases, mv << py, 80 AE 2 << E;. But since the atomic recoil energy
small even for classical collisions, this restriction on the size of AE, which
esults from the exclusion principle, has no serious effect on the relaxation of a
urrent when the electric field is turned off, except in special cases (e.g., super-

In a real metal, the scattering process results from imperfections in the lattice;
¢ shall see in Chapter 12 that electrons can move through a perfect, static lattice
ith no energy loss from scattering. But defects, impurities, or vibrations of the
lattice lead to scattering processes in which energy is lost. Thus all of these tend
o increase the electrical resistivity. In Chapter 12 we shall discuss the connection
etween these ideas and the explanation of the conduction process in semicon-
uctors and superconductors

SUMMARY

In this chapter, armed with nothing but elementary quantum statistics,
e have been able to explain an enormous variety of phenomena which had
uzzled investigators for a long time, It is remarkable that we could do this
‘even though we used only the simplest possible models for the structure of the
systems which we have studied. By now we should be convinced of the
validity of the quantum statistical formulas, and we are in a position to study
‘more realistic models. In the next chapter, we shall see how various models of
olids can be analyzed by straightforward application of the elements of
uantum mechanics which we have already developed in Chapters 4-11.

PROBLEMS

Use the general formulas (3), (4), and (5) to compute the number of
arrangements for each distribution in the four-particle example of
Section 11.1, and verify that your results agree with Table 1.

Derive the Einstein expression for the specific heat in the limits of high
T (T » hv/k) and low T(T < hv/k). Show that your low-T formula gives
a specific heat of 0.27R at T = hv/6k.

Find the value of the specific heat at T = ©,/2, according to the Debye
theory. To do this, note that Eq. (20) may be written

T* (0O
R&z/ (—T)



