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1. Introduction

The theory of relativity was first introduced in a publication by Albert
Einstein in the year 1905. Einstein was 26 years old at the time and was
employed at the patent office in Bern, Switzerland. In spite of the fact
that he had little formal training in theoretical physics, Einstein had been
working to understand certain conceptual problems having to do with the
properties of electromagnetic fields and the propagation of electromagnetic
waves. This work eventually led to the relativity theory.

Let us begin by reviewing some of the historical background. The ques-
tion “what is light” goes back many centuries. One inportant clue to the
nature of light is the law of refraction, discovered in 1620 by Snell,

n1 sin θ1 = n2 sin θ2. (1)

According to Snell’s Law, a beam of light that crosses the boundary between
two transparent materials will be deflected in a way that depends on the
index of refraction, n, of the two materials. For example, a beam passing
from air (n = 1.00) into water (n = 1.33) will be deflected towards the
normal. In 1640 Descartes demonstrated that the law of refraction can be
explained by assuming that a beam of light consists of a stream of particles or
“corpuscles” which gain velocity as they pass from air into water according
to the rule v ∝ n. In the years that followed, Isaac Newton (1642-1727)
became the chief proponent of the particle theory of light, and although
most scientists of the day accepted Newton’s theory some (Robert Hooke for
example) were unconvinced. Among the unconvinced was Christian Huygens
(1629-1695), a Dutch scientist and contemporary of Newton, who in 1678
proposed a wave theory of light that was also able to explain Snell’s law.
In this case one needs to assume that the light waves travel more slowly in
water than in air according to the rule v ∝ 1/n.
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The particle vs wave issue was settled (at least temporarily) in 1801 when
Thomas Young demonstrated that under the appropriate conditions light
exhibits interference behavior that, at the time, could only be understood
in terms of the wave theory. The wave-like nature of light was confirmed
in subsequent experiments by Fresnel and others, who observed and studied
a variety of diffraction and interference effects. In 1850, Jean Foucault
provided further evidence for the wave theory by demonstrating that light
travels more slowly in water than in air, in agreement with the v ∝ 1/n rule.

The final confirmation of the wave theory came in the late 19th century
with the development by Maxwell (in 1865) of the equations of electricity and
magnetism, and with the experiments of Hertz (in 1887) which showed that
electromagnetic waves could be produced and detected in the laboratory.

According to Maxwell’s equations the electric and magnetic fields must
obey the following mathematical rules:

~∇· ~E =
1

ǫ0
ρ, (2)

~∇· ~B = 0, (3)

~∇× ~E = −∂ ~B

∂t
, (4)

~∇× ~B = µ0
~J + ǫ0µ0

∂ ~E

∂t
, (5)

where ρ is the charge density and ~J is the current density. While Maxwell’s
goal had been to construct equations that incorporated the known effects of
electricity and magnetism, what he discovered was that his equations allow
wave-like electromagnetic fields, apparently capable of propagating through
free space. Setting ρ and ~J to zero, one can easily show that the equations
have solutions of (for example) the form

~E = E0 x̂ Re
[

eik(z−ct)
]

~B = B0 ŷ Re
[

eik(z−ct)
]

, (6)

where

B0 =
√

ǫ0µ0 E0 (7)

and where

c =
1

√
ǫ0µ0

. (8)
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Physically, these expressions have the form of a plane wave moving in the
+z direction at speed v = c = 1/

√
ǫ0µ0. Inserting the numerical values for

ǫ0 and µ0, one obtains the result

1
√

ǫ0µ0
= 2.998 × 108 m/s, (9)

which is the speed of light.
The discovery by Maxwell that light is an electromagnetic wave was, of

course, one of the most important developments in the history of physics.
As we shall see, this discovery set the stage for Einstein.

2. Electromagnetic Fields and The Principle of

Relativity

Einstein was very much interested in Maxwell’s theory of electricity and
magnetism, and apparently spent quite a bit of time thinking about various
aspects of the theory. One thing Einstein did was to explore the relationships
between the electric and magnetic fields that one obtains when collections
of charges are viewed from different frames of reference. For example, if
the charges are at rest in a particular frame of reference then we obtain
only electric fields. However, if the same charge distribution is viewed from
a moving frame of reference, there will be magnetic fields as well. The
somewhat unsettling result is that if one then calculates the electromagnetic
forces, it will turn out that the net force acting on a given charge may be
different in different frames of reference!

Problems are also encountered when one thinks about the propagation
of electromagnetic waves. Suppose we produce an electromagnetic wave (for
example, a pulse from a strobe light) that moves off in the +z direction at
speed c, as predicted from Maxwell’s equations. Then imagine that we use
a spaceship (or a real fast car) travelling at high speed in the same direction
as the light pulse in an effort to “catch up” to the wave pulse. According
to the usual way of thinking, if the light pulse moves at speed c relative
to the original frame, then its speed relative to the moving observer will
less than c. For example we would expect that an observer travelling in
the +z direction at 3

4c would see the light pulse move past him or her at a
relative speed of 1

4c. The problem is that what the moving observer sees,
namely an electromagnetic waves travelling at speed 1

4c, is not consistent
with Maxwell’s equations.

At this point it is useful to define our frames of reference more carefully
(see Fig. 1). Let us think of the frame S as being “at rest” (for example,
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Figure 1: Frames of reference.

relative to the earth), and suppose that the frame S′ moves at velocity
~v relative to S. Any “event” that takes place will have space and time
coordinates x, y, z, and t in the S frame of reference, and similarly, in S′

the save event will have coordinates x′, y′, z′, and t′. For simplicity we take
~v to be along the z axis, and in addition we choose the time coordinates so
that t = t′ = 0 when the origins of S and S′ coincide. Then, with the usual
assumptions of classical physics, we have (see Fig. 1)

x′ = x, y′ = y, z′ = z − vt, t′ = t. (10)

This set of equations is referred to as the Galilean transformation.
The transformation law for the velocity of an object follows directly from

Eq. (10). Using the symbols u and u′ for the velocities measured relative to
S and S′ and the definitions

~u =
d~r

dt
, ~u ′ =

d~r ′

dt′
(11)

we obtain
~u ′ = ~u − ~v, (12)

where this last equation is for ~v of arbitrary direction.
Although the frames S and S′ move relative to each other, the two frames

are similar in many respects. As seen from S, S′ is moving at velocity v, and
similarly as seen from S′, S is moving at velocity v. The direction of motion
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is opposite, but other than that there is no distinction. So, if we believe
that there is no preferred direction in space, we should think of the two
frames as being equivalent. Furthermore, our everyday experiences lead us
to believe that uniform, constant velocity motion should not have an effect
on the outcome of experiments. These ideas form the basis of the Principle
of Relativity. This principle states that the laws of physics must be

the same in all inertial frames of reference, where an inertial frame
is any frame in which objects move in a straight line at constant velocity
unless acted upon by an outside force. If the laws of physics are the same
in all inertial frames, then the outcomes of all possible experiments should
be independent of the overall velocity of the system as a whole.

We are now in a position to understand more clearly why we encoun-
tered “problems” with the behavior of the electromagnetic fields. Basically,
the difficulty is that that Maxwell’s equations do not satisfy the Principle
of Relativity. This is probably seen most clearly in the example with the
electromagnetic waves. According to Maxwell’s equations, light travels at
the speed 2.998 × 108 m/s. But according to Eq. (12), if the speed in S is
2.998× 108 m/s, then the speed in S′ will be something else. As a result the
electromagnetic fields we would “see” in the moving frame would not corre-
spond to valid solutions of Maxwell’s equations. If our analysis is correct, it
seems that one needs to use different equations in different reference frames.

So the dilemma that Einstein faced can be summarized as follows: 1)
Einstein believed instinctively that the Principle of Relativity had to be
correct; 2) Maxwell’s equations appear to be inconsistent with the Principle
of Relativity; 3) However, Maxwell’s equations appear to be correct in the
sense that they seem to be in agreement with experiment for a wide range
of electromagnetic phenomena. It would seem that there is no way to retain
both Maxwell’s equations and the Principle of Relativity.

3. The Ether Hypothesis

Given that there is a conceptual problem concerning the propagation of
light waves, it is useful to spend a moment or two thinking about how other
waves move. Let’s use sound waves as an example. In this case, we can
easily understand the motion by recognizing that sound waves are simply
pressure waves that travel through air, water or some other medium. In air
at STP, sound waves propagate at a speed of about 343 m/s, and there is no
conceptual problem. In a frame in which the medium is at rest sound waves
move at 343 m/s, and in other frames the speed will have a different value,
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easily found with Eq. (12). There is no contradiction with the Principle of
Relativity because the different frames of reference are not equivalent.

Clearly then, one could resolve the electromagnetic wave problem by
supposing that light waves also travel through a medium rather than through
empty space. In fact, Maxwell himself had postulated the existence of a
substance, which he referred to at the “luminiferous ether”, to serve as the
medium for electromagnetic waves. This was quite natural for Maxwell,
since the physicists of the late 19th century liked to view the world from
a purely mechanical perspective. By postulating the existence of ether, it
was possible to think of the electric and magnetic fields as disturbances
transmitted by the ether rather than “action at a distance”. If ether exists
then we solve the relativity problem by supposing that Maxwell’s equations
are correct in the ether rest frame and that light propagates at speed c in
that frame only.

By 1900, experiments were beginning to cast doubt on the ether hypothe-
sis. One of the relevant experiments concerns the small variation throughout
the year of the apparent positions of the stars. This variation arises from the
earth’s orbital motion and is commonly referred to as “stellar aberration”.
Suppose we wish to observe a star that lies in the plane of the earth’s orbit,

c

v

B

A

Star

Sun

Figure 2: Illustration of stellar aberation. The apparent position of a star
in the sky depends on the motion of the earth. When the earth is at A, the
telescope must be pointed directly at the star. At point B, the telescope
needs to be tilted away from the true position of the star, as illustrated in
the inset at the lower left of the figure.
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as shown in Fig. 2. When the earth is at point A we are moving towards
the star, and therefore to observe the star we need to point our telescope
directly at the star’s true position. Three months later the earth is at B
and our motion is perpendicular to that of the starlight. In this case, we
observe the light from the star by tilting our telescope away from the true
position of the star by an angle θ ≃ v/c where v is the earth’s orbital speed,
v = 3×104 m/s, so that the starlight neatly “falls” down the axis of the tele-
scope as the telescope moves. If we observe two stars whose true positions
in the sky differ by 90◦, the apparent angular separation might be greater
than 90◦ in spring and less than 90◦ in fall.

Stellar aberration was well known to 19th century physicists, having first
been observed in 1727 by British astronomer James Bradley. The observa-
tion of this effect provided some of the first convincing evidence that the
propagation of light was not instantaneous and allowed Bradley to make a
fairly accurate determination of c. Of course, this took place well before the
wave nature of light had been firmly established.

The observations of stellar aberration are consistent with the wave pic-
ture and the ether hypothesis if one simply imagines that the ether is fixed
relative to the stars and that the earth moves through the ether as it orbits
the sun. However, some complications arise if one takes this picture seri-
ously. For example, the relative motion of the ether should affect the way in
which light is refracted by a lens, but this effect was not seen. Various com-
plex explanations were put forward, but in the end these explanations were
ruled out in 1887 by the well-known experiment of Michelson and Morley.
It seems that there is no easy way to simultaneously explain the Michelson-
Morley result, which appears to require the ether to be at rest relative to
earth, with the observations of stellar aberration.

The text by McGervey[1] has a nice discussion of the early experiments
on the propagation of light and the efforts to reconcile the observations with
the ether hypothesis.

4. Einstein’s Postulates

The ether of the late 19th century was a peculiar substance. It suppos-
edly permeated all of space, and was capable of responding so quickly that
waves could be transmitted at the enormous speed of 3×108 m/s. At the
same time the ether apparently offered no resistance to the motion of ordi-
nary matter. For example, the motion of the planets had been measured to
high precision over many centuries and no effects from ether drag were seen.
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Essentially the ether was considered to be unobservable, except through it’s
effect on the motion of EM waves. In retrospect, it is not so difficult see
that the ether was simply an imaginative invention.

Einstein, who had great instincts for physics, never accpeted the ether
hypothesis and apparently payed little attention to the ether experiments
and their interpretations. Einstein believed that Maxwell’s equations were
fundamentally correct, and in particular, he accepted the idea that light
waves simply propagate through empty space at speed c as the equations
seem to imply. His experience and instincts also led him to believe that
the relativity principle must hold. The difficulty, of course, (as we saw in
Section 2) is that these two ideas seem to be incompatable, and it took
someone with the brilliance of Einstein to see the way out of the dilemma.

The basic starting principles are the following:
1) Relativity: The laws of physics are the same in all inertial
frames of reference.

2) Propagation of Light: The speed of light is the same in all
frames of reference, independent of the motion of the source and
the observer.

The relativity principle is both straightforward and consistent with our
everyday experience. Saying that the laws of physics are the same in all
frames is equivalent to saying that there is no way to determine what we
might call the “absolute velocity” of a given reference frame. The second
postulate is more difficult to accept, since it is inconsistent with the classical
velocity transformation given in Eq. (12). According to Einstein’s postulate
if the “object” we are observing is a light pulse, then both u and u′ will
have the value c. To someone unfamiliar with the theory of relativity it is
difficult to see how Eq. (12) could possibly be wrong since it follows easily
from Eq. (10) which in turn follows from the geometry of Fig. 1. The solution
is to recognize, as Einstein did, that the properties of space and time are
more complex than one ordinarily imagines. In reality, the drawing in Fig. 1
is not a true representation of the geometry of space and time, and the
Galilean transformation, Eq. (10), is simply wrong.

5. The Lorentz Transformation

Let us see whether we can find the correct formulas for the transforma-
tion from S to S′. Specifically, the goal is to find expressions for the event
coordinates x′, y′, z′ and t′ in terms of x, y, z and t. In general, x′, y′ etc.
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could be arbitrarily complicated functions of the unprimed coordinates:

x′ = f(x, y, z, t),

y′ = g(x, y, z, t),

z′ = h(x, y, z, t), (13)

t′ = k(x, y, z, t).

However, there are some simplifications.
First of all, one can argue that the transformation equations must be

linear. This follows from the assumption that space and time are homo-
geneous, or in other words that the laws of physics do not depend on our
absolute location in space or time.

To see this result suppose we introduce a second set of reference frames,
Σ and Σ′, analogous to S and S′ except with different space and time origins.
We suppose that Σ is at rest relative to S, and so the event coordinates in
Σ (which we shall represent by capital letters) differ from those in S by at
most a constant:

X = x + x0, Y = y + y0, Z = z + z0, T = t + t0. (14)

If S′ moves relative to S at velocity ~v and Σ′ moves relative to Σ at the same
velocity then Σ′ will be at rest relative to S′ and there will be a corresponding
set of equations to relate the coordinates in Σ′ to those in S′:

X ′ = x′ + x′

0, Y ′ = y′ + y′0, Z ′ = z′ + z′0, T ′ = t′ + t′0. (15)

Now, by combining Eqs. (13) and (15) we can obtain the transformation
from S to Σ′. For example

X ′ = f(x, y, z, t) + x′

0. (16)

But if space and time are homogeneous, the transformation for Σ → Σ′ must
be identical to the that for S → S′ (i.e. Eq. (13)), and from this we obtain

X ′ = f(x + x0, y + y0, z + z0, t + t0). (17)

The conclusion is that f(x, y, z, t) and f(x + x0, y + y0, z + z0, t + t0) differ
only by a constant. Furthermore, this result must hold for all possible events
– i.e., for all x, y, z and t – and this is will be the case if and only if f is a
linear function of the coordinates. One can make analogous arguments for
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g, h and k, and therefore we have

x′ = a11 x + a12y + a13 z + a14 t,

y′ = a21x + a22y + a23 z + a24 t,

z′ = a31x + a32y + a33 z + a34 t, (18)

t′ = a41 x + a42y + a43 z + a44 t.

The constant terms that would ordinarily be present in arbitrary linear
functions have been omitted in Eq. (18) because our coordinates are defined
in such a way that x′ = y′ = z′ = t′ = 0 when x = y = z = t = 0.

The next simplification comes from recognizing that the equations for x′

and y′ cannot be complicated. As S′ moves relative to S the z and z′ axes
remain co-linear and so any event that occurs on the z-axis must also occur
on z′. In other words, events with x = y = 0 must always have x′ = y′ = 0.
Since this will be the case for all z and t, we conclude that a13, a14, a23, and
a24 are all zero. The coefficient a12 must also be zero. This can be seen, for
example, by noting that events that occur along the y-axis (x = z = 0) at
time t = 0 must be on the y′-axis in S′ (i.e., must have x′ = 0), since the
frames coincide at t = 0. The coefficient a21 must be zero by an analogous
argument, and so we have

x′ = a11x, y′ = a22y. (19)

According to Einstein’s postulates, all inertial frames must be equivalent
and thus we may assume that in the inverse transformation x and y should
depend only on x′ and y′, respectively,

x = b11x′, y = b22y′. (20)

But the inverse transformation can be obtained by simply solving Eqs. (18)
for x and y, and it follows that the coefficients a31, a32, a41 and a42 in
Eq. (18) must be zero.

One additional clue to the form of the transformation can be found by
remembering that the origin of S′ moves at velocity v in frame S. This
means that events with z = vt occur at the origin of S′, and so we should
get z′ = 0 whenever z = vt.

Combining all of these results we may write Eqs. (18) in the simplified
form

x′ = ax,

y′ = by,

z′ = d(z − vt), (21)

ct′ = fz + gct,

10



where we have switched over to a subscript-free notation, and where factors
of c have been inserted as needed to make the coefficients a, b, d, f and
g dimensionless. Note that at this point the equations are fully consistent
with the Galilean transformation, Eq. (10).

To understand what changes are required in the theory of relativity we
need to incorporate Einstein’s idea that light always propagates at the speed
c. Imagine an experiment in which a pulse of light is produced at the
common origins of S and S′ at time t = t′ = 0. A photodetector is placed
at some arbitrary location in S, and the event we shall be concerned with
is the arrival of the wavefront at the detector. If the event has space and
time coordinates x, y, z and t, then the wavefront has travelled a distance
s =

√

x2 + y2 + z2. By Einstein’s second postulate s must be equal to ct
and therefore we have

x2 + y2 + z2 − c2t2 = 0. (22)

As seen from S′, the light source and the detector are in motion, but this
has no effect on the light propagation – the wavefront travels at speed c in
S′ also, and so if x′, y′, z′ and t′ are the event coordinates in S′, we must
obtain

x′2 + y′2 + z′2 − c2t′2 = 0. (23)

This obviously places important constraints on the form of the transforma-
tion. The condition is that I ′ ≡ x′2 + y′2 + z′2 − c2t′2 must be zero whenever
I ≡ x2 + y2 + z2 − c2t2 = 0.

To see what the consequences are, we substitute from Eq. (21). The
result for I ′ is

I ′ = a2x2 + b2y2 + [d2 − f2]z2 − [g2 − β2d2]c2t2

−2[fg + βd2]zct, (24)

where
β ≡ v

c
. (25)

To use this result we need to remember that we are free to place our
photodetector anywhere in space, which means that x, y and z are arbitrary.
Given the detector location, t is determined by the speed of light, and the
condition is that the resulting I ′ must be zero. With this in mind, we can
easily see that the combination [fg + βd2] must be zero. Detectors placed
on the positive z axis and at the corresponding point on the negative z axis
will give events with the same time coordinate, and in both cases we must
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get I ′ = 0. This can only be the case if terms linear in z are absent. Next
we note that detectors placed at the same distance s from the origin on the
x, y or z axes will also have equal time coordinates. Since we must get the
same result, I ′ = 0, in all cases, the coefficients a2, b2 and [d2 − f2] must all
be equal. Furthermore, since x = ct for events corresponding to detectors
located on the positive x-axis, it must also be the case that [g2−β2d2] = a2.

The interesting conclusion we have obtained is that I ′ can be written in
the form

I ′ = a2x2 + a2y2 + a2z2 − a2c2t2 (26)

or simply
I ′ = a2I. (27)

It is important to understand that while Eqs. (22) and (23) hold only
for the special “wavefront events” considered above, Eq. (27) is completely
general. We have used the wavefront events to obtain information about
the transformation coefficients, and since Eq. (27) follows from the resulting
constraints on the coefficients it applies equally to all events.

The final step in the argument is to note that the only sensible value for
a is 1. As seen from either frame of reference, the other frame is moving, and
therefore it would be incongruous to argue that the combination x2+y2+z2−
c2t2 should be larger in one frame than in the other for all possible events.
Since all inertial frames are equivalent, the only sensible assumption is that
this particular combination has the same value in all frames of reference.

To summarize, we have the following results:

a = b = 1, (28)

fg + βd2 = 0, (29)

d2 − f2 = 1, (30)

g2 − β2d2 = 1. (31)

From this point it is simply a matter of algebra to find the coefficients.
First, rearrange Eq. (29) and square to obtain

β2d4 = f2g2. (32)

Then substitute for f2 from Eq. (30) and for g2 from Eq. (31). The resulting
equation can be solved for d with the result

d = γ. (33)
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where we have introduced the shorthand notation

γ ≡ 1
√

1 − β2
. (34)

Completing the algebra one obtains

g = γ. (35)

and
f = −βγ, (36)

Thus, the correct relativistic transformation equations are

x′ = x,

y′ = y,

z′ = γ (z − βct), (37)

ct′ = γ (ct − βz).

This set of formulas is referred to as the Lorentz transformation.
The inverse transformation is easily obtained by simply inverting these

equations. The result is

x = x′,

y = y′,

z = γ (z′ + βct′), (38)

ct = γ (ct′ + βz′).

Notice that the inverse transformation has the physically reasonable prop-
erty of being identical to the forward transformation, except for the sign of
the velocity.

6. Time Dilation

To illustrate the usefulness of Eq. (37) we shall now use the transfor-
mation equations to derive the familiar time dilation formula. Suppose we
choose two arbitrary events with space and time coordinates x1, y1, z1, t1,
and x2, y2, z2, t2 in frame S. From the Lorentz transformation, the elapsed
time between the two events in the S′ frame will be

∆t′ = t′2 − t′1 = γ(t2 − t1) −
1

c
βγ(z2 − z1). (39)
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We see immediately that if the two events occur at the same space point in
S, then

∆t′ = γ∆t. (40)

In the same way one can easily demonstrate that if the two events occur at
the same space point in S′ then

∆t = γ∆t′. (41)

In general we say that the “proper time” is the time interval between
two events measured in a frame in which the events occur at the same space
point. What the results given above show is that the time interval measured
in any other frame will be longer than the proper time by a factor of γ, where
γ is to be calculated using the velocity of the “other” frame relative to the
proper-time frame.

Note that the proper time is special in the sense that it can be measured
directly with a single clock. The measurement of non-proper time intervals
is more complex since it requires the use of sychronized clocks separated
in space by a distance γβc∆τ (where ∆τ is the proper time interval) or
equivalently the transmission of information over that distance.

As an example, suppose the two events are the creation and the decay of
a π-meson. If the π is at rest in our frame of reference (take that to be S′)
then the lifetime we measure will be a proper time interval. As seen from
any other frame of reference (S) the π will be moving and the measured
lifetime will be greater than that measured in the π rest frame by a factor
of γ. As usual, γ is calculated using the velocity of S′ relative to S, which in
this example is just the velocity of the π in S. Experimentally one observes
that particles moving at velocity v have longer mean lifetimes, by a factor
γ, than corresponding particles at rest in the lab.

7. Four-Vector Notation

Although one can easily work directly with the Lorentz transformation
formulas as we have written them in Eq. (37) above, it is convenient to
rewrite the equations in matrix form. In our new notation, the quantities
x, y, z and t will be expressed as the components of a “4-vector”, xµ, where
the index µ takes on the values 1-4. We define

x1 = x, x2 = y, x3 = z, x4 = ict, (42)
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where the factor i ≡
√
−1 has been included for reasons to be seen later.

With these definitions the transformation of Eq. (37) takes the form










x′

y′

z′

ict′











=











1 0 0 0
0 1 0 0
0 0 γ iβγ
0 0 −iβγ γ





















x
y
z
ict











. (43)

If we use the notation Γµν for the elements of the transformation matrix,
then we may write Eq. (43) in the form

x′

µ =
∑

ν

Γµνxν , (44)

or simply
x′ = Γ x. (45)

The transformation rule in Eq. (44) is analogous in many ways to the
transformation that gives the components of an ordinary three-dimensional
vector in a frame O′ that is rotated relative to some original frame O. Such
a transformation would have the form

V ′

i =
3

∑

j=1

RijVj, (46)

where R is a 3× 3 rotation matrix. Of course, all vectors transform from O
to O′ according to the same rule, and it follows that we can define a vector
to be any set of three quantities that transform, under rotations, according
to Eq. (46).

In the same way, we define a 4-vector to be set of four quantities, Aµ

with µ = 1-4, that transform from S to S′ in precisely the same way as the
space-time coordinates, xµ,

A′

µ =
∑

ν

ΓµνAν . (47)

As we progress through the section on relativity we will learn that it is
possible to construct a number of physically interesting relativistic 4-vectors.

8. The Velocity Transformation

In Section 4 we discussed the idea the “common-sense” velocity tranfor-
mation given in Eq. (12) must be incorrect if we accept Einstein’s postulates.
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Our goal in the present section is to use the Lorentz transformation to find
the correct relativistic velocity formula.

We define velocity in the usual way. To determine the velocity ~u of the
object in frame S we note the position of the object at two times t1 and t2.
The components of the average velocity for this time interval are then given
by

ux =
∆x

∆t
, uy =

∆y

∆t
, uz =

∆z

∆t
. (48)

where ∆x = x2−x1, ∆y = y2−y1, ∆z = z2 − z1 and ∆t = t2− t1. In the S′

frame the velocity components will be different. To find ~u′ we consider the
two measurements in S to be two events and we use those same two events
to determine the velocity components in S′. What we want then is

u′

x =
∆x′

∆t′
, u′

y =
∆y′

∆t′
, u′

z =
∆z′

∆t′
. (49)

where ∆x′ = x′

2 − x′

1, etc., and where the primed coordinates are related to
the unprimed ones by the usual Lorentz transformation, Eq. (37) or (43).

Since the Lorentz transformation is linear, the quantity ∆x ≡ x2 − x1

is a 4-vector and therefore transforms according to Eq. (47). The velocity
components of Eq. (49) are then easily expressed in terms of the unprimed
∆x components: for example

u′

x =
∆x

γ (∆t − 1
c
β∆z)

. (50)

Dividing both the numerator and denominator by ∆t we obtain

u′

x =
ux

γ (1 − βuz/c)
. (51)

Similar manipulations give

u′

y =
uy

γ (1 − βuz/c)
, (52)

and

u′

z =
uz − βc

(1 − βuz/c)
. (53)

At this point is should be obvious that Eqs. (51)–(53) are valid for in-
stantaneous velocities as well as for average velocities since the details are
unchanged if one imagines the space and time intervals to be infinitesmal.

Compared with Galilean formula given in Eq. (12), the relativistic ex-
pression for the velocity is somewhat more complex. Notice, however, that if
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v and uz are less than 0.1c, the relativistic result will differ from the classical
one by no more than about 1%.

It would be interesting and convenient if it turned out that ux, uy and
uz transformed as the first three components of a 4-vector. However, we can
easily see that this is not the case; for any 4-vector the transformation must
be of the form A1 = A′

1, . . . , and so we would have needed ux = u′

x.
It turns out that there is a quantity, closely related to ~u, that does

transform as a 4-vector. Notice that in the definitions (48) and (49) the
numerators, ∆x, ∆y, and ∆z, are 4-vector components, and so the added
complexity of Eqs. (51)–(53) arises from the fact that ∆t 6= ∆t′. It also
follows that one can obtain a “4-velocity” by making a definition in which
the time denominator is a quantity that has the same value in all frames.
The obvious choice is to use the elapsed proper time, ∆τ , and define

Uµ =
∆xµ

∆τ
. (54)

At this point it is useful to remember that the events we are concerned
with here are the two measurements of the object’s position, and it follows
that the proper time is the time interval measured in the object’s rest frame.
So effectively we have introduced a third frame of reference, O, and our
definition of the 4-velocity is odd in the sense that the space intervals are
measured in one frame (S or S′) and the time interval is measured in another
(O). Of course, if the velocities are small compared to c then the time
intervals are nearly equal in all frames and U1 ≃ ux, etc.

More generally, there is a simple relationship between ~u and U . As seen
from frame S, the object (and therefore frame O) moves at velocity ~u and
it follows that

∆t = γ∆τ (55)

where the γ in this equation is to be calculated using the velocity ~u. For
the space components of U we then find

U1 =
∆x1

∆τ
= γ

∆x

∆t
= γux, (56)

and finally, recalling that ∆x4 = ic∆t, we obtain

U =











γux

γuy

γuz

iγ c











. (57)
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This last result gives us an alternate method of finding ~u′ if ~u is known.
One can first construct the 4-velocity U , then use the Γ matrix to transform
to the S′ frame, and finally extract ~u′ from U ′ using, for example, u′

x =
icU ′

1/U
′

4, etc.

9. Properties of 4-Vectors

There are many parallels between the properties of relativistic 4-vectors
and familiar 3-dimensional vectors of classical physics. Suppose ~A and ~B are
vectors, and a, b and c are scalars. As we all know, the basic laws of classical
physics have forms such as ~A = ~B or a = b. We may have laws of the form
~A · ~B = c, but we never have laws of the form Ax = b. The reason, of
course, is that the value of Ax depends on the orientation of the coordinate
system we adopt whereas b does not, and we require that the laws of physics
should not depend on the choice of coordinates. The equation ~A · ~B = c is
acceptable because ~A · ~B is independent of the choice of coordinates.

Many of these ideas carry over to 4-vectors. According to Einstein’s
postulates, the laws of physics must be the same in all inertial frames. We
say the fundamental laws must be covariant under the Lorentz

transformation, which means that the basic equations must be identical
in S and S′. If one can identify 4-vectors, it is straightforward to construct
equations that satisfy this condition. For example, if A and B are 4-vectors,
then the set of equations

Aµ = kBµ, µ = 1, 4 (58)

where k is a constant, will satisfy the Lorentz covariance condition.
Ordinary vectors have the property that the dot product is a scalar

quantity, and one can easily demonstrate that 4-vectors have an analogous
property: namely,

∑

µ

AµBµ =
∑

µ

A′

µB′

µ. (59)

We say that the quantity
∑

AµBµ is an “invariant” since it has the same
value in all inertial frames. This means that equations of the form

∑

µ

AµBµ = constant (60)

also satisfy the Lorentz covariance condition.
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10. The Momentum 4-Vector

One of our goals in the study of relativity is to understand how the laws
of classical mechanics, and in particular the laws of dynamics, need to be
modified in light of Einstein’s postulates. In classical physics the motion of a
particle is described by Newton’s second law, ~F = m~a, and it should come as
no surprise that this equation is no longer valid in Einstein’s theory. In the
present section we will take an important step towards understanding rela-
tivistic dynamics by introducing a new quantity, the momentum 4-vector.

In classical mechanics the momemtum of a particle traveling at velocity
~u is ~p = m~u. We therefore wish to define the relativistic momentum in such
a way that p is a 4-vector having the property p1 → mux, p2 → muy, and
p3 → muz in the limit u → 0. We can satisfy these requirements by making
use of the 4-velocity U of Eq. (57) and defining

pµ = mUµ, (61)

so that

p =











γmux

γmuy

γmuz

iγmc











. (62)

Since we want p to be a 4-vector, m must be a Lorentz invariant, and so the
m in our definition is understood to be the rest mass of the particle.

The relativistic momentum is an exceedingly important quantity. As
we shall see later, it plays a role in equations of relativistic dynamics. In
addition to that, one finds that, with the above definition, the total mo-

mentum is conserved in both particle collisions and decay processes.
Let us focus for the moment on the conservation law. Our definition

of the momentum is certainly a “reasonable” one, and we know that the
first three components of p (summed over all participating particles) will be
conserved in the limit of low velocities. So it is plausible that ptotal might
be conserved in relativistic processes, but there is certainly no simple proof
that this must be the case.

On the other hand, there are good reasons to expect that momentum will
conserved in collisions if we accept the results of the previous sections. In
particular, what we shall demonstrate below is that momentum is, in fact,
rigorously conserved in certain simple collision processes involving equal
mass particles. Subsequently, we will assume that ptotal is conserved in all
situations.
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Figure 3: Inelastic collision of two identical masses

Consider the collision of two identical objects or particles of equal mass
m. We assume that the two objects are moving as shown in Fig. 3 and that
when they collide, they stick together forming some composite particle. The
goal is to find the final velocity of this resulting blob.

Let particle 1 be moving in the −x direction with some arbitrary mo-
mentum px = −p0. We assume that particle 2 has px = +p0 and some
non-zero pz. The two particles have equal rest masses, but move at different
velocities so γ1 6= γ2. The initial momentum 4-vectors can then be written
in the form

p1 =











−p0

0
0

iγ1mc











p2 =











+p0

0
γ2muz

iγ2mc











. (63)

Let us first find the final velocity of the blob assuming that momentum is
conserved. Initially, the total momentum is just p1 + p2. After the collision
we have a blob of mass M moving with some velocity ~v, and so the final
momentum can be written in the form of Eq. (62). Equating the initial and
final momenta we obtain
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ptotal =











0
0

γ2muz

i(γ1 + γ2)mc











=











γfM vx

γfM vy

γfM vz

iγfM c











. (64)

From this equation we can simply read off the final velocity. We have vx =
vy = 0 and from the ratio ip3/p4 we obtain the simple result

vz

c
=

(

γ2

γ1 + γ2

)

uz

c
. (65)

We shall now demonstrate that this is the correct answer by solving the
problem another way. In this case we transform to a new frame of reference,
S′, in which the colliding particles have equal and opposite momenta – i.e.,
to the “center-of-momentum” frame. In this frame the particles have equal
and opposite velocities, which means that there is no preferred direction. It
then follows from symmetry that when the particles collide and stick, they
come to rest. So if the frame S′ is traveling at velocity ~v relative to S, as
seen from S the final blob will have this same velocity ~v.

This means that the problem is reduced to finding the velocity of the c.m.
frame. Applying the Lorentz transformation to the momentum 4-vectors of
Eq. (64) we find the momenta in an arbitrary frame S′ are

p′

1 =











1 0 0 0
0 1 0 0
0 0 γ iβγ
0 0 −iβγ γ





















−p0

0
0

iγ1mc











=











−p0

0
−βγγ1mc
iγγ1mc











. (66)

and

p′

2 =











1 0 0 0
0 1 0 0
0 0 γ iβγ
0 0 −iβγ γ





















p0

0
γ2muz

iγ2mc











=











p0

0
γγ2muz − βγγ2mc

iγγ2mc − iβγγ2muz











. (67)

To make the momenta equal and opposite we therefore need

βγγ1mc = γγ2muz − βγγ2mc, (68)

which gives

β =
γ2

γ1 + γ2

uz

c
. (69)
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So in this particular example, where we can find the correct final velocity
by exploiting the symmetry of the collision, we see that momentum is, in
fact, conserved. From this point on we shall simply assume that momentum
is conserved in all reaction and decay processes. Of course, agreement with
experiment is the real test of any theory in physics, and in the present case,
many years of experimentation confirm the assumption that total momen-
tum is conserved.

11. Energy and the Equation of Motion

So far we have not said anything about the 4th component of the mo-
mentum. This component of p is also conserved in collisions and decay
processes. In fact, as we shall see shortly, p4 is proportional to the energy.

Let us begin by considering what happens if we apply a force ~F to
some particle of rest mass m. According to classical mechanics the resulting
acceleration can be found from Newton’s second law,

~F = m~a = m
d~v

dt
, (70)

where we have adopted a more conventional notation in which we use ~v
rather than ~u for the particle velocity. Now it should be clear that Eq. (70)
can no longer be correct, since this equation implies that if a constant force
is applied to an object, the velocity will increase indefinitely with no upper
bound. This would allow velocities to exceed c, which is not consistent with
the equations of relativity.1

We would obtain a somewhat more reasonable equation of motion if we
were to suppose that the mass of a particle increases with increasing velocity
according to the rule mrel = γm, and then simply use this relativistic mass
in Eq. (70) in place of the rest mass. However, this is still not the best
choice. Instead we rewrite the classical equation of motion in the form

~F =
d~p

dt
, (71)

1There are a number of ways in which this can be seen. For example, one can show from
Eqs. (51)–(53) velocities greater than c can not be obtained by velocity addition. Also we
know that γ becomes imaginary for v > c, which means that most of our equations would
become meaningless. Finally we see that the momentum, ~p = γm~v, approaches infinity
as v → c which suggests that particles with nonzero rest mass may never reach the speed
of light.
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and generalize by replacing the classical momentum, ~p = m~v, by the rela-
tivistic momentum ~p = γm~v:

~F =
d

dt
γm~v. (72)

The advantage of adopting this equation of motion, or equivalently this
definition of ~F , is that when one has a system of interacting particles with
no external forces, the total momentum of the system will be conserved if
the mutual interactions satisfy Newton’s Third Law, ~Fij = −~Fji. Turning
the logic around, if total momentum is conserved (which we assume to be
the case), then the definition of ~F given in Eq. (72) will give forces that
satisfy Newton’s Third Law.

Let us now look more closely at the meaning of p4. We begin with the
easily demonstrated result,

∑

µ

pµ pµ = −m2c2. (73)

As the particle accelerates, the individual components of p change, but
according to Eq. (73),

∑

pµpµ remains constant. Thus, by taking the time
derivative and using Eq. (62) we obtain

2γ m~v · d~p

dt
+ 2iγ m c

dp4

dt
= 0, (74)

which gives
dp4

dt
=

i

c
~F ·~v. (75)

This equation says that in the time interval dt, p4 will change by an amount

dp4 =
i

c
~F ·~v dt =

i

c
~F ·d~s (76)

where d~s is the net displacement in dt. But ~F ·d~s is the work done on
the particle in time dt, and therefore, if we assume that the work-energy
theorem of classical mechanics (work done = gain in energy) carries over
to relativity, we have

dp4 =
i

c
dE. (77)

This says that, except for an overall arbitrary integration constant, p4 is i/c
times the energy. Taking the integration constant to be zero, we obtain

p4 =
i

c
E, (78)
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and then, from Eq. (62) we have

E = γmc2. (79)

The two great conservation laws of classical physics, conservation of energy
and conservation of momentum, have in relativity become a single law, con-
servation of the four-momentum.

An additional useful relationship can be obtained by substituting Eq. (78)
into Eq. (73). Rearranging the terms, we find the result

E2 = p2c2 + m2c4. (80)

12. Relativistic Dynamics

In classical mechanics the motion of particles is governed by the equation
~F = m~a. As we have already noted, the correct relativistic generalization
of Newton’s Second Law is given in Eq. (72),

~F =
d~p

dt
=

d

dt
γm~v. (81)

One could think of this equation as a definition of what we mean by ~F . How-
ever, this perspective is potentially missleading, since one might conclude
that any definition of ~F is equally reasonable. It is important to remember
all the fundamental equations of physics, including the law of motion, must
be covariant under the Lorentz transformation. In the present context the
relativity principle requires that ~F and d~p/dt transform in the same way.

Let us now make use of this rule to determine how forces we observe in
nature must transform if the covariance condition is to be satisfied. First
we must understand that the components of ∆~p/∆t (for example ∆px/∆t)
are not Lorentz invariants, and it follows that the force components (Fx for
example) will be different in different Lorentz frames.

To see how the force components transform we note that the set of
quantities ∆px, ∆py, ∆pz and i∆E/c transform as a 4-vector, since ∆p is
just the difference of two 4-vectors; i.e.

∆p = p2 − p1, (82)

where p1 and p2 are the momentum 4-vectors of the particle at times t1 and
t2 respectively. It follows that if ∆τ is the elapsed proper time between the
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two measurements of p, the quantities ∆pµ/∆τ comprise a 4-vector. Then,
recalling that ∆τ is the elapsed time in the particle rest frame we have

∆pµ

∆τ
=

∆t

∆τ

∆pµ

∆t
= γ

∆pµ

∆t
(83)

(where γ is calculated with the particle’s velocity), and it follows that

γ dp

dt
≡











γ dpx/dt
γ dpy/dt
γ dpz/dt
i γ

c
dE/dt











(84)

is a 4-vector.
To make use of this result we multiply both sides of Eq. (81) by γ. We

then conclude that it must be possible to construct a 4-vector whose first
three components are γFx, γFy and γFz . To find the corresponding fourth

component we need a quantity that matches the fourth component of γ dp

dt

from Eq. (84). According to Eq. (75), the appropriate choice is iγ
c

~F·~v. Thus
we are led to the construction

K ≡











γ Fx

γ Fy

γ Fz

i γ
c

~F ·~v











. (85)

This quantity is commonly referred to as the Minkowski Force.
So our conclusions are as follows. The basic equation of motion can be

written in the form
K = γ dp

dt
. (86)

where K and γ dp

dt
are defined in Eqs. (85) and (84) respectively. Upon

canceling the common factors of γ, the first three lines of Eq. (86) give the
usual equation of motion, Eq. (81), while the fourth equality is the statement
of the work-energy theorem

dE = ~F ·d~s. (87)

In order to satisfy the principle of relativity, the quantity K must transform
as a 4-vector – if this condition is satisfied, Eq. (86) is obviously covariant.

13. Electricity and Magnetism

Since the theory of relativity was initially formulated to address concerns
about the nature of electromagnetism, it is fitting that we should finally re-
turn to the subject of how the theory of electricity and magnetism can be
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formulated in a way that is fully consistent with the ideas of relativity. One
of our specific goals in this section will be to demonstrate that electromag-
netic forces obey the principles outlined in the preceeding paragraphs.

Classically, the electromagnetic force on a charged particle moving in an
electromagnetic field is

~F = q ( ~E + ~v× ~B), (88)

and this same force law carries over in relativity. So, we can find the trans-
formation law for ~F , if we first understand how the fields transform. The
field transformation will be somewhat complicated as we can see from the
following example.

Suppose we have an infinite line of charge at rest in the S frame. This
line of charge will give rise to an electric field which we can easily calculate.
As seen from S′, the charges will be in motion, and the resulting current
will produce a magnetic field not present in S. We conclude that the field
transformation law must mix electric and magnetic fields. Since there are six
field components altogether, we can anticipate that the field transformation
will involve something more complicated than 4-vectors.

As it turns out, it is easiest to work initially with potentials rather than
fields. Given the scalar potential, φ and the vector potential, ~A, the fields
are obtained according to the rules

~E = −~∇φ − ∂~A

∂t
; ~B = ~∇× ~A. (89)

Furthermore, it turns out that the potentials do comprise a 4-vector:

A =











Ax

Ay

Az

i φ
c











. (90)

For now, we simply accept this without proof.
We now use Eq. (89) to work out the field components. For example,

Ex = −∂φ

∂x
− ∂Ax

∂t
, (91)

which, with the substitutions x = x1, ict = x4, Ax = A1 and iφ/c = A4,
becomes

i

c
Ex =

∂A1

∂x4
− ∂A4

∂x1
. (92)
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With similar manipulations, all of the electric and magnetic field components
can be written in an analogous forms. Thus, it is useful introduce an object
that we shall refer to as the “electromagnetic field tensor”. The EM field
tensor is a 4×4 matrix of quantities, defined by

Tµν =
∂Aν

∂xµ

− ∂Aµ

∂xν

. (93)

The conventional electromagnetic field components are given in terms of
these new quantities by

i
c
Ex = T41

i
c
Ey = T42

i
c
Ez = T43

Bx = T23 By = T31 Bz = T12,
(94)

and since we have Tνµ = −Tµν , the full field tensor is

T =











0 Bz −By − i
c
Ex

−Bz 0 Bx − i
c
Ey

By −Bx 0 − i
c
Ez

i
c
Ex

i
c
Ey

i
c
Ez 0











. (95)

Since each element of the field matrix is constructed of parts that involve
the derivative of one component of a 4-vector with respect to a component
of a second 4-vector, the transformation rule for the field tensor should be
easy to find.

To simplify somewhat, assume that Q is any 4-vector, and suppose that
we define a tensor

Gµν ≡ ∂Qµ

∂xν

. (96)

Our goal is to find the transformation that gives G′

µν (a given component
of G in the S′ frame) in terms of the quantities Gρλ (the components of
G in the S). Now from the definition G and the transformation rule for
4-vectors, Eq. (47), we have

G′

µν =
∂Q′

µ

∂x′

ν

=
∂

∂x′

ν

∑

ρ

ΓµρQρ =
∑

ρ

Γµρ
∂Qρ

∂x′

ν

. (97)

To relate this expression to that given in Eq. (96) we need to think of Qρ as
a function of the un-primed coordinates. Then, from the chain rule we have

∂Qρ

∂x′

ν

=
∑

λ

∂Qρ

∂xλ

· ∂xλ

∂x′

ν

(98)
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But x′ = Γx and similarly x = Γ-1x′ where Γ-1 is the transformation
that takes us from S′ to S, and so we have

xλ =
∑

σ

Γ-1
λσ x′

σ (99)

which gives
∂xλ

∂x′

ν

= Γ-1
λν = Γνλ, (100)

where the last step follows from the fact that Γ-1 is just the transpose of Γ.
Combining these results we obtain

G′

µν =
∑

ρ,λ

ΓµρΓνλGρλ (101)

or in shorthand notation
G′ = Γ G Γ-1. (102)

It is not too difficult to see that the electromagnetic field tensor must trans-
form in the same way,

T ′ = Γ T Γ-1. (103)

The final step is to demonstrate that the Minkowski force constructed
with Eqs. (85) and (88) is a 4-vector. Working out the individual components
of K we obtain

K1 = γq (Ex + vyBz − vzBy), (104)

K2 = γq (Ey + vzBx − vxBz), (105)

K3 = γq (Ez + vxBy − vyBx), (106)

and
K4 = i

γ

c
q (vxEx + vyEy + vzEz), (107)

where we have made use of the fact that the magnetic force is perpendicular
to ~v. Inspecting these results, we see that K can be obtained by contracting
T with the relativistic 4-velocity, U , given in Eq. (57):

Kµ = q
∑

ν

TµνUν . (108)

We now easliy demonstrate that this quantity is a 4-vector:

K′ = q T ′U ′ = q
(

ΓT Γ-1)

(ΓU ) = q ΓT Γ-1ΓU = q ΓT U = ΓK,
(109)

where we have made use of the fact that Γ-1Γ is the unit matrix.
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